什么是自动释放池
自动释放池底层原理
常见问题:
1、临时变量什么时候释放?
2、自动释放池的底层结构是什么样的?
3、自动释放池能否嵌套调用?
底层结构
- 通过源码观察自动释放池的底层结构。自动释放池本身也是一个对象:
struct AutoreleasePoolPageData
{
#if SUPPORT_AUTORELEASEPOOL_DEDUP_PTRS
struct AutoreleasePoolEntry {
uintptr_t ptr: 48;
uintptr_t count: 16;
static const uintptr_t maxCount = 65535; // 2^16 - 1
};
static_assert((AutoreleasePoolEntry){ .ptr = MACH_VM_MAX_ADDRESS }.ptr == MACH_VM_MAX_ADDRESS, "MACH_VM_MAX_ADDRESS doesn't fit into AutoreleasePoolEntry::ptr!");
#endif
magic_t const magic;
__unsafe_unretained id *next;
pthread_t const thread;
AutoreleasePoolPage * const parent;
AutoreleasePoolPage *child;
uint32_t const depth;
uint32_t hiwat;
AutoreleasePoolPageData(__unsafe_unretained id* _next, pthread_t _thread, AutoreleasePoolPage* _parent, uint32_t _depth, uint32_t _hiwat)
: magic(), next(_next), thread(_thread),
parent(_parent), child(nil),
depth(_depth), hiwat(_hiwat)
{
}
};
magic_t const magic; //用来校验AutoreleasePoolPage的结构是否完整
__unsafe_unretained id *next;//指向新添加的autorelease对象的下一个,初始化时指向begin();
pthread_t const thread;//指向当前线程
AutoreleasePoolPage * const parent;//指向父节点,第一个节点的parent为nil;
AutoreleasePoolPage *child;//指向当前子节点,最后一个节点的chil为nil;
uint32_t const depth;//代表深度,从0开始,往后递增1;
uint32_t hiwat;// 代表high water mark最大入栈数量标记
AutoreleasePoolPage继承自AutoreleasePoolPageData。它的结构体如下:
class AutoreleasePoolPage : private AutoreleasePoolPageData
{
friend struct thread_data_t;
public:
static size_t const SIZE =
#if PROTECT_AUTORELEASEPOOL
PAGE_MAX_SIZE; // must be multiple of vm page size
#else
PAGE_MIN_SIZE; // size and alignment, power of 2
#endif
private:
static pthread_key_t const key = AUTORELEASE_POOL_KEY;
static uint8_t const SCRIBBLE = 0xA3; // 0xA3A3A3A3 after releasing
static size_t const COUNT = SIZE / sizeof(id);
static size_t const MAX_FAULTS = 2;
// EMPTY_POOL_PLACEHOLDER is stored in TLS when exactly one pool is
// pushed and it has never contained any objects. This saves memory
// when the top level (i.e. libdispatch) pushes and pops pools but
// never uses them.
# define EMPTY_POOL_PLACEHOLDER ((id*)1)
# define POOL_BOUNDARY nil
id * begin() {
return (id *) ((uint8_t *)this+sizeof(*this));
}
id * end() {
return (id *) ((uint8_t *)this+SIZE);
}
bool empty() {
return next == begin();
}
bool full() {
return next == end();
}
bool lessThanHalfFull() {
return (next - begin() < (end() - begin()) / 2);
}
...
}
- 关于自动释放池的结构,可以从源码的注释来解读:
A thread's autorelease pool is a stack of pointers. Each pointer is either an object to release, or POOL_BOUNDARY which is an autorelease pool boundary. A pool token is a pointer to the POOL_BOUNDARY for that pool. When the pool is popped, every object hotter than the sentinel is released. The stack is divided into a doubly-linked list of pages. Pages are added and deleted as necessary. Thread-local storage points to the hot page, where newly autoreleased objects are stored.
翻译过来就是线程的自动释放池是一个指针堆栈。每个指针要么是一个要释放的对象,要么是POOL_BOUNDARY自动释放池边界(也就是哨兵对象)。池的token是指向该池的POOL_BOUNDARY的指针。当池进行pop时,每个比哨兵(POOL_BOUNDARY)活跃(因为是栈,所以后进先出,哨兵对象是栈底位置)的对象都被释放。堆栈被分成一个双链接的页(AutoreleasePoolPage)列表。页面添加并在必要时删除。新自动释放的对象存储存储的页是hotPage,线程局部存储指向hotPage。根据描述,得出如下结构图:
自动释放池.jpg
对象添加push流程
自动释放对象添加进入自动释放池其实就是进行压榨push操作,主要就是在AutoreleasePoolPage::push()方法进行的,其源码如下:
static inline void *push()
{
id *dest;
if (slowpath(DebugPoolAllocation)) {
// Each autorelease pool starts on a new pool page.
dest = autoreleaseNewPage(POOL_BOUNDARY);
} else {
dest = autoreleaseFast(POOL_BOUNDARY);
}
ASSERT(dest == EMPTY_POOL_PLACEHOLDER || *dest == POOL_BOUNDARY);
return dest;
}
static inline id *autoreleaseFast(id obj)
{
AutoreleasePoolPage *page = hotPage();
if (page && !page->full()) {
return page->add(obj);
} else if (page) {
return autoreleaseFullPage(obj, page);
} else {
return autoreleaseNoPage(obj);
}
}
正常都会走autoreleaseFast流程,POOL_BOUNDARY是个哨兵对象。autoreleaseFast方法中主要就是先判断有没有已存在的page,没有的话就调用autoreleaseNoPage方法;有的话判断当前page是否已满,已满走autoreleaseFullPage;未满走add。
根据源码总结push操作流程如下:
1、第一次进来,且传入的是POOL_BOUNDARY(哨兵对象) 的时候,会判断当前线程是否已经创建AutoreleasePoolPage,如果没有,就会从当前线程获取一个占位的释放池(autoreleaseFast
->autoreleaseNoPage
),然后返回哨兵对象地址(这个地址在后面pod方法传回来:
if (obj == POOL_BOUNDARY && !DebugPoolAllocation) {
// We are pushing a pool with no pool in place,
// and alloc-per-pool debugging was not requested.
// Install and return the empty pool placeholder.
return setEmptyPoolPlaceholder();
}
static inline id* setEmptyPoolPlaceholder()
{
ASSERT(tls_get_direct(key) == nil);
tls_set_direct(key, (void *)EMPTY_POOL_PLACEHOLDER);
return EMPTY_POOL_PLACEHOLDER;
}
// EMPTY_POOL_PLACEHOLDER is stored in TLS when exactly one pool is
// pushed and it has never contained any objects. This saves memory
// when the top level (i.e. libdispatch) pushes and pops pools but
// never uses them.
# define EMPTY_POOL_PLACEHOLDER ((id*)1)
2、如果第一进来且传入的不是一个POOL_BOUNDARY,而是真正的对象(比如对象调用autorelease方法),则手动创建一个AutoreleasePoolPage,并且把POOL_BOUNDARY第一个压栈,然后把对象指针压栈,然后返回哨兵对象地址(这个地址在后面pod方法传回来):
// Install the first page.
AutoreleasePoolPage *page = new AutoreleasePoolPage(nil);
setHotPage(page);
// Push a boundary on behalf of the previously-placeholder'd pool.
if (pushExtraBoundary) {
page->add(POOL_BOUNDARY);
}
// Push the requested object or pool.
return page->add(obj);
3、不是第一次进来的话,且当前hotPage还未压满时,直接压榨:
if (page && !page->full()) {
return page->add(obj);
}
4、如果当前hotPage已满,则创建新的page,新的page置为之前hotPage的child,hotPage置为新page的perent,然后把新的page设置成hotPage。然后把obj直接压到新的page中,这里不需要像第一个page那样需要哨兵对象,添加对象之后返回next:
id *autoreleaseFullPage(id obj, AutoreleasePoolPage *page)
{
// The hot page is full.
// Step to the next non-full page, adding a new page if necessary.
// Then add the object to that page.
ASSERT(page == hotPage());
ASSERT(page->full() || DebugPoolAllocation);
do {
if (page->child) page = page->child;
else page = new AutoreleasePoolPage(page);
} while (page->full());
setHotPage(page);
return page->add(obj);
}
对象出战pop流程
pop操作主要在方法AutoreleasePoolPage::pop()中进行的。pop操作流程主要做如下几件事情:
1、容错处理,比如盘空、异常等处理;
2、如果自动释放池正常,会调用popPage方法进行真正的出栈,先是把对象一个个出栈,然后一个个调用release方法(popPage->releaseUntil):
page->releaseUntil(stop);
void releaseUntil(id *stop)
{
// Not recursive: we don't want to blow out the stack
// if a thread accumulates a stupendous amount of garbage
while (this->next != stop) {
// Restart from hotPage() every time, in case -release
// autoreleased more objects
AutoreleasePoolPage *page = hotPage();
// fixme I think this `while` can be `if`, but I can't prove it
while (page->empty()) {
page = page->parent;
setHotPage(page);
}
page->unprotect();
#if SUPPORT_AUTORELEASEPOOL_DEDUP_PTRS
AutoreleasePoolEntry* entry = (AutoreleasePoolEntry*) --page->next;
// create an obj with the zeroed out top byte and release that
id obj = (id)entry->ptr;
int count = (int)entry->count; // grab these before memset
#else
id obj = *--page->next;
#endif
memset((void*)page->next, SCRIBBLE, sizeof(*page->next));
page->protect();
if (obj != POOL_BOUNDARY) {
#if SUPPORT_AUTORELEASEPOOL_DEDUP_PTRS
// release count+1 times since it is count of the additional
// autoreleases beyond the first one
for (int i = 0; i < count + 1; i++) {
objc_release(obj);
}
#else
objc_release(obj);
#endif
}
}
setHotPage(this);
#if DEBUG
// we expect any children to be completely empty
for (AutoreleasePoolPage *page = child; page; page = page->child) {
ASSERT(page->empty());
}
#endif
}
stop指针是自动释放池创建时的栈底地址(哨兵对象地址),由pop(stop)方法调用时返回,这样就可以把stop之后的对象一个个pop出来,然后调用release方法释放引用计数。
4、把各个page的对象释放完之后,就开始清理page链表:
static void
popPage(void *token, AutoreleasePoolPage *page, id *stop)
{
if (allowDebug && PrintPoolHiwat) printHiwat();
page->releaseUntil(stop);
// memory: delete empty children
if (allowDebug && DebugPoolAllocation && page->empty()) {
// special case: delete everything during page-per-pool debugging
AutoreleasePoolPage *parent = page->parent;
page->kill();
setHotPage(parent);
} else if (allowDebug && DebugMissingPools && page->empty() && !page->parent) {
// special case: delete everything for pop(top)
// when debugging missing autorelease pools
page->kill();
setHotPage(nil);
} else if (page->child) {
// hysteresis: keep one empty child if page is more than half full
if (page->lessThanHalfFull()) {
page->child->kill();
}
else if (page->child->child) {
page->child->child->kill();
}
}
}
自动释放池创建和销毁时机
在ARC环境下,在主线程中,会默认创建一些Runloop。
- 默认runloop的创建和销毁时机为:
第一次创建:启动runloop时
最后一次销毁:runloop退出时
其他时候的创建和销毁:当runloop即将进行休眠状态时会销毁旧的释放池,并创建一个新的释放池。
- 如果是我们手动创建的runloop则是在超过它的作用域的时候销毁。
什么时候需要自动释放池
- 写给予命令行的程序时,就是没有UI框架;
- 写循环,循环里边包含了大量临时创建的对象;
- 创建了新的线程;
- 长时间在后台运行的任务;
- 合理运用自动释放池,可以降低程序的内存峰值,异步的方式将文件保存在磁盘(SDWebimage里边异步保存图片到磁盘,类似的占用内存的操作);
网友评论