美文网首页OpenCvOpenCVopencv
基于图像矩阵的mask(kernel)卷积操作

基于图像矩阵的mask(kernel)卷积操作

作者: 寻找时光机 | 来源:发表于2017-09-26 22:13 被阅读43次

    矩阵上的卷积操作非常简单。根据mask矩阵(也称为内核)重新计算图像中的每个像素值。该mask保存将调整相邻像素(和当前像素)对新像素值有多大影响的值。从数学的角度来看,我们用加权平均值与我们指定的值进行比较。

    测试用例

    考虑一个图像对比度增强方法的问题。基本上我们要为图像的每个像素应用以下公式:


    mask

    Code

    #include <opencv2/imgcodecs.hpp>
    #include <opencv2/highgui.hpp>
    #include <opencv2/imgproc.hpp>
    #include <iostream>
    
    using namespace std;
    using namespace cv;
    
    static void help(char* progName)
    {
        cout << endl
            << "This program shows how to filter images with mask: the write it yourself and the"
            << "filter2d way. " << endl
            << "Usage:" << endl
            << progName << " [image_path -- default ../data/lena.jpg] [G -- grayscale] " << endl << endl;
    }
    
    void Sharpen(const Mat& myImage, Mat& Result);
    
    int main(int argc, char* argv[])
    {
        help(argv[0]);
        const char* filename = argc >= 2 ? argv[1] : "lena.bmp";
    
        Mat src, dst0, dst1;
    
        if (argc >= 3 && !strcmp("G", argv[2]))
            src = imread(filename, IMREAD_GRAYSCALE);
        else
            src = imread(filename, IMREAD_COLOR);
    
        if (src.empty())
        {
            cerr << "Can't open image [" << filename << "]" << endl;
            return -1;
        }
    
        namedWindow("Input", WINDOW_AUTOSIZE);
        namedWindow("Output", WINDOW_AUTOSIZE);
        imshow("Input", src);
    
        double t = (double)getTickCount();
    
        Sharpen(src, dst0);
    
        t = ((double)getTickCount() - t) / getTickFrequency();
        cout << "Hand written function time passed in seconds: " << t << endl;
        imshow("Output", dst0);
        waitKey();
    
        Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0,
            -1, 5, -1,
            0, -1, 0);
    
        t = (double)getTickCount();
        filter2D(src, dst1, src.depth(), kernel);
        t = ((double)getTickCount() - t) / getTickFrequency();
    
        cout << "Built-in filter2D time passed in seconds:     " << t << endl;
        imshow("Output", dst1);
        waitKey();
        return 0;
    }
    
    
    void Sharpen(const Mat& myImage, Mat& Result)
    {
        CV_Assert(myImage.depth() == CV_8U);  // accept only uchar images
        const int nChannels = myImage.channels();
        Result.create(myImage.size(), myImage.type());
        for (int j = 1; j < myImage.rows - 1; ++j)
        {
            const uchar* previous = myImage.ptr<uchar>(j - 1);
            const uchar* current = myImage.ptr<uchar>(j);
            const uchar* next = myImage.ptr<uchar>(j + 1);
    
            uchar* output = Result.ptr<uchar>(j);
    
            for (int i = nChannels; i < nChannels*(myImage.cols - 1); ++i)
            {
                *output++ = saturate_cast<uchar>(5 * current[i]
                    - current[i - nChannels] - current[i + nChannels] - previous[i] - next[i]);
            }
        }
    
        Result.row(0).setTo(Scalar(0));
        Result.row(Result.rows - 1).setTo(Scalar(0));
    
        Result.col(0).setTo(Scalar(0));
        Result.col(Result.cols - 1).setTo(Scalar(0));
    }
    

    视频链接: YouTube channel

    相关文章

      网友评论

        本文标题:基于图像矩阵的mask(kernel)卷积操作

        本文链接:https://www.haomeiwen.com/subject/xfieextx.html