美文网首页
【Sc-RNAseq】190723-Seurat包学习

【Sc-RNAseq】190723-Seurat包学习

作者: 森尼啊 | 来源:发表于2019-07-23 14:48 被阅读0次

引言

英文教程及数据:https://satijalab.org/seurat/pbmc3k_tutorial.html
参考教程:健明的单细胞课程(Seurat V2版本)+翻译的中文版Seurat教程https://www.jianshu.com/p/03b94b2034d5 +http://qiubio.com/new/book/chapter-07/#%E5%AF%B9%E5%88%86%E9%9B%86%E7%BB%86%E8%83%9E%E8%BF%9B%E8%A1%8C%E6%A0%87%E8%AE%B0assigning-cell-type-identity-to-clusters

seurat总结

counts矩阵进来后被包装为对象,方便操作。
然后一定要经过 NormalizeDataScaleData 的操作
函数 FindVariableGenes 可以挑选适合进行下游分析的基因集。
函数 RunPCARunTSNE 进行降维
函数 FindClusters 直接就分群了,非常方便
函数 FindAllMarkers 可以对分群后各个亚群找标志基因。
函数 FeaturePlot 可以展示不同基因在所有细胞的表达量
函数 VlnPlot 可以展示不同基因在不同分群的表达量差异情况
函数 DoHeatmap 可以选定基因集后绘制热图

载入R包

if (!requireNamespace("BiocManager"))
    install.packages("BiocManager")
if (!requireNamespace("Seurat"))
    BiocManager::install("Seurat")
rm(list = ls()) # clear the environment
library(Seurat)
packageVersion("Seurat")
options(warn=-1) # turn off warning message globally
suppressMessages(library(Seurat))

下载数据,并创建Seurat对象

健明大佬使用的是scRNA的内置数据集,且Seurat是V2版本,内力不够的我,转换过程比较费劲,觉得官网的数据更方便理解,下载的文件夹里有三个文件。Seurat V3可以直接用Read10X函数读取cellrangerV2 和V3的数据。

pbmc.data <- Read10X(data.dir = "~/Desktop/190722/pbmc/filtered_gene_bc_matrices/hg19")
pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k",min.cells = 3, min.features = 20)
View(pbmc)

事先检查

#线粒体细胞占比 
#方法1
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
#方法2
mito.genes <- grep(pattern = "^MT-", x = rownames(x = sce@data), value = TRUE)
percent.mito <- Matrix::colSums(sce@raw.data[mito.genes, ]) / Matrix::colSums(sce@raw.data)
#红细胞占比 
HB.genes_total <- c("HBA1","HBA2","HBB","HBD","HBE1","HBG1","HBG2","HBM","HBQ1","HBZ") # 人类血液常见红细胞基因
HB_m <- match(HB.genes_total,rownames(pbmc@assays$RNA))
HB.genes <- rownames(pbmc@assays$RNA)[HB_m]
HB.genes <- HB.genes[!is.na(HB.genes)]
pbmc[["percent.HB"]]<-PercentageFeatureSet(pbmc,features=HB.genes)
#Feature、count、线粒体基因、红细胞基因占比可视化。
VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt","percent.HB"), ncol = 4) 
#v2的nUMI和nGene分别改为了nCount_RNA、nFeature_RNA

均一化与标准化

unique feature counts > 2,500 or < 200,过滤掉
cell >5% mitochondrial counts 过滤掉

pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)  
pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)
#标准化
all.genes <- rownames(pbmc)
pbmc <- ScaleData(pbmc, features = all.genes)

特征提取,PCA降维

pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)
#前10个variable基因
top10 <- head(VariableFeatures(pbmc), 10)
# plot variable features with and without labels
plot1 <- VariableFeaturePlot(pbmc)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
CombinePlots(plots = list(plot1, plot2),legend="bottom")
#  PCA降维
pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))
head(pbmc@reductions$pca@cell.embeddings)#每个细胞在PC轴上的坐标
head(pbmc@reductions$pca@feature.loadings)#每个基因对每个PC轴的贡献度(loading值)
print(pbmc[["pca"]], dims = 1:5, nfeatures = 5)
DimPlot(pbmc, reduction = "pca")
DimHeatmap(pbmc, dims = 1:15, cells = 500, balanced = TRUE)

确定维度

pbmc <- JackStraw(pbmc, num.replicate = 100)#注意: 这可能是一个非常费时的过程。
pbmc <- ScoreJackStraw(pbmc, dims = 1:20)
plot1<-JackStrawPlot(pbmc, dims = 1:15)#看pc显著差一部分
plot2<-ElbowPlot(pbmc)#看拐点 
CombinePlots(plots = list(plot1, plot2),legend="bottom")#PC为10的时候,每个轴是有区分意义的。

聚类

#通过shared nearest neighbor (SNN)算法 识别细胞类群,其中resolution,, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities.
pbmc <- FindNeighbors(pbmc, dims = 1:10)
pbmc <- FindClusters(pbmc, resolution = 0.5)
table(pbmc@active.ident) # 查看每一类有多少个细胞
# 提取某一类细胞。
head(subset(as.data.frame(pbmc@active.ident),pbmc@active.ident=="2"))
# Look at cluster IDs of the first 5 cells
head(Idents(pbmc), 5)
#提取某一cluster
subpbmc<-subset(x = pbmc,idents="2")
#WhichCells, 找到某种特征的细胞,Returns a list of cells
#提取部分细胞(30个细胞)
 subbset<-subset(x=pbmc,cells=colnames(pbmc@assays$RNA@counts)[1:30])

可视化降维UMAP/tSNE

pbmc <- RunUMAP(pbmc, dims = 1:10)
head(pbmc@reductions$umap@cell.embeddings) # 提取UMAP坐标值。
pbmc <- RunTSNE(pbmc, dims = 1:10)
 head(pbmc@reductions$tsne@cell.embeddings)
plot1<-DimPlot(pbmc, reduction = "umap",label = TRUE)+scale_color_npg()
plot2<-DimPlot(pbmc, reduction = "tsne",label = TRUE)+scale_color_npg()
CombinePlots(plots = list(plot1, plot2),legend="bottom")

其中使用UMAP功能时报错,通过library(reticulate) py_install("umap-learn")后解决

差异分析

# find all markers of cluster 1
cluster1.markers <- FindMarkers(pbmc, ident.1 = 1, min.pct = 0.25)
head(cluster1.markers, n = 5)
#这是一种one-others的差异分析方法,就是cluster1与其余的cluster来做比较,当然这个是可以指定的,参数就是ident.2
# find all markers distinguishing cluster 5 from clusters 0 and 3
cluster5.markers <- FindMarkers(pbmc, ident.1 = 5, ident.2 = c(0, 3), min.pct = 0.25)
head(cluster5.markers, n = 5)
#输出一个总表,找某个cluster与剩余所有细胞的差异marker,only.pos 参数,可以指定返回positive markers 基因。test.use可以指定检验方法,可选择的有:wilcox,bimod,roc,t,negbinom,poisson,LR,MAST,DESeq2。
pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
pbmc.markers %>% group_by(cluster) %>% top_n(n = 2, wt = avg_logFC)
#cluster内部保守的conserved marker基因
head(FindConservedMarkers(pbmc, ident.1 = 0, ident.2 = 1, grouping.var = "groups"))

小提琴图

用整理后的数据绘制基因小提琴图,与用原始的counts绘制小提琴图

plot1<-VlnPlot(pbmc, features = c("MS4A1", "CD79A"),ncol=1)+scale_color_npg()

plot2<- VlnPlot(pbmc, features = c("MS4A1", "CD79A"),ncol=1, same.y.lims=T,slot = "counts", log = TRUE)+scale_color_npg()
CombinePlots(plots = list(plot1, plot2))

featurePlot和热图

plot1<-FeaturePlot(pbmc, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP", 
                               "CD8A"),min.cutoff = 0, max.cutoff = 4)
top10 <- pbmc.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC)
plot2 <- DoHeatmap(pbmc, features = top10$gene) + NoLegend()+scale_color_npg()
#CombinePlots(plots = list(plot1, plot2))
library(gridExtra) 
grid.arrange(plot1,plot2,ncol = 2, nrow = 1)

细胞周期分析

pbmc <- CellCycleScoring(
  object = pbmc,
  g2m.features = cc.genes$g2m.genes,
  s.features = cc.genes$s.genes
)
pbmc <- CellCycleScoring(
  object = pbmc,
  g2m.features = cc.genes$g2m.genes,
  s.features = cc.genes$s.genes
)
#在UMAP中绘制细胞周期信息
umapem<-pbmc@reductions$umap@cell.embeddings
metada= pbmc@meta.data
dim(umapem);dim(metada)

metada$bar<-rownames(metada)
umapem$bar<-rownames(umapem)
ccdata<-merge(umapem,metada,by="bar")
head(ccdata)
library(ggplot2)
plot<-ggplot(ccdata, aes(UMAP_1, UMAP_2,label=Phase))+geom_point(aes(colour = factor(Phase)))+
  #plot<-plot+scale_colour_manual(values=c("#CC33FF","Peru","#660000","#660099","#990033","black","red", "#666600", "green","#6699CC","#339900","#0000FF","#FFFF00","#808080"))+
  labs("@yunlai",x = "", y="") 
plot=plot+scale_color_aaas()  +
  theme_bw()+theme(panel.grid=element_blank(),legend.title=element_blank(),legend.text = element_text(color="black", size = 10, face = "bold"))
plot<-plot+guides(colour = guide_legend(override.aes = list(size=5))) +theme(plot.title = element_text(hjust = 0.5))
plot

用SingleR定义每一个细胞的类型

new.cluster.ids <- c("Naive CD4 T", "Memory CD4 T", "CD14+ Mono", "B", "CD8 T", "FCGR3A+ Mono", 
                     "NK", "DC", "Platelet")
names(new.cluster.ids) <- levels(pbmc)
pbmc <- RenameIdents(pbmc, new.cluster.ids)
plot1<-DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
plot2<-DimPlot(pbmc, reduction = "tsne", label = TRUE, pt.size = 0.5) + NoLegend()
grid.arrange(plot1,plot2,ncol = 2, nrow = 1)

亚群分析

如果我们对参数进行一些调整,比如resolution=0.8,就可以发现CD4 T细胞会被分成两个亚群。我们可以对这一亚群使用上面类似的办法进行分析。

# 生成一个快照, 其实就是把pbmc@ident中的数据拷贝到pbmc@meta.data中。
# 当我们想把pbmc@meta.data中的值赋值给pbmc@ident的话,可以使用SetAllIdent函数。
# 比如pbmc <- SetAllIdent(object=pbmc, id = 'orig.ident')
pbmc <- StashIdent(object = pbmc, save.name = "ClusterNames_0.6")

# 现在我们使用不同的resolution来重新分群。当我们提高resolution的时候,
# 我们可以得到更多的群。
# 之前我们在FindClusters中设置了save.snn=TRUE,所以可以不用再计算SNN了。
# 下面就直接提高一下区分度,设置resolution = 0.8
pbmc <- FindClusters(object = pbmc, reduction.type = "pca", 
                     dims.use = 1:10, resolution = 0.8, 
                     print.output = FALSE)

# 并排画两个tSNE,右边的是用ClusterNames_0.6 (resolution=0.6) 来分组颜色的。
# 我们可以看到当resolution提高之后,CD4 T细胞被分成了两个亚群。
plot1 <- TSNEPlot(object = pbmc, do.return = TRUE, 
                  no.legend = TRUE, do.label = TRUE)
plot2 <- TSNEPlot(object = pbmc, do.return = TRUE, 
                  group.by = "ClusterNames_0.6",
                  no.legend = TRUE, do.label = TRUE)
plot_grid(plot1, plot2)

相关文章

网友评论

      本文标题:【Sc-RNAseq】190723-Seurat包学习

      本文链接:https://www.haomeiwen.com/subject/xfxolctx.html