标量、向量、矩阵、张量之间的联系
标量(scalar)
一个标量表示一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。我们用斜体表示标量。标量通常被赋予小写的变量名称。
向量(vector)
一个向量表示一组有序排列的数。通过次序中的索引,我们可以确定每个单独的数。通常我们赋予向量粗体的小写变量名称。当我们需要明确表示向量中的元素时,我们会将元素排列成一个方括号包围的纵柱:
矩阵(matrix)
矩阵是具有相同特征和纬度的对象的集合,表现为一张二维数据表。其意义是一个对象表示为矩阵中的一行,一个特征表示为矩阵中的一列,每个特征都有数值型的取值。通常会赋予矩阵粗体的大写变量名称,比如。
张量(tensor)
在某些情况下,我们会讨论坐标超过两维的数组。一般地,一个数组中的元素分布在若干维坐标的规则网格中,我们将其称之为张量。使用 来表示张量“A”。张量中坐标为的元素记作。
四者之间关系
标量是0阶张量,向量是一阶张量。举例:
标量就是知道棍子的长度,但是你不会知道棍子指向哪儿。
向量就是不但知道棍子的长度,还知道棍子指向前面还是后面。
张量就是不但知道棍子的长度,也知道棍子指向前面还是后面,还能知道这棍子又向上/下和左/右偏转了多少。
向量和矩阵的范数归纳
向量的范数(norm)
定义一个向量为:。任意一组向量设为。其不同范数求解如下:
- 向量的1范数:向量的各个元素的绝对值之和,上述向量的1范数结果就是:29。
- 向量的2范数:向量的每个元素的平方和再开平方根,上述的2范数结果就是:15。
- 向量的负无穷范数:向量的所有元素的绝对值中最小的:上述向量的负无穷范数结果就是:5。
- 向量的正无穷范数:向量的所有元素的绝对值中最大的:上述向量的正无穷范数结果就是:10。
- 向量的p范数:
矩阵的范数
定义一个矩阵。 任意矩阵定义为:,其元素为 。
矩阵的范数定义为
当向量取不同范数时, 相应得到了不同的矩阵范数。
- 矩阵的1范数(列范数):矩阵的每一列上的元
素绝对值先求和,再从中取个最大的,(列和最大),上述矩阵的1范数先得到,再取最大的最终结果就是:9。
- 矩阵的2范数:矩阵的最大特征值开平方根,上述矩阵的2范数得到的最终结果是:10.0623。
其中, 为 的特征值绝对值的最大值。
-
矩阵的无穷范数(行范数):矩阵的每一行上的元素绝对值先求和,再从中取个最大的,(行和最大),上述矩阵的行范数先得到,再取最大的最终结果就是:16。
-
矩阵的核范数:矩阵的奇异值(将矩阵svd分解)之和,这个范数可以用来低秩表示(因为最小化核范数,相当于最小化矩阵的秩——低秩),上述矩阵A最终结果就是:10.9287。
-
矩阵的L0范数:矩阵的非0元素的个数,通常用它来表示稀疏,L0范数越小0元素越多,也就越稀疏,上述矩阵最终结果就是:6。
-
矩阵的L1范数:矩阵中的每个元素绝对值之和,它是L0范数的最优凸近似,因此它也可以表示稀疏,上述矩阵最终结果就是:22。
-
矩阵的F范数:矩阵的各个元素平方之和再开平方根,它通常也叫做矩阵的L2范数,它的优点在于它是一个凸函数,可以求导求解,易于计算,上述矩阵A最终结果就是:10.0995。
- 矩阵的 p范数
网友评论