本篇主要是对小码哥底层视频学习的总结。方便日后复习。
上篇《iOS底层原理总结 - 探寻Runtime本质(二)》:
https://www.jianshu.com/p/eab0b9d6169a
本篇学习总结:
- 方法调用本质
- 消息发送机制
- 动态解析过程
- 消息转发机制
- 类方法消息转发过程
好了,带着问题,我们一一开始阅读吧 😊
一.方法调用本质
本文我们探寻方法调用的本质,首先通过一段代码,将方法调用代码转化为c++代码查看方法调用的本质是什么样子的
[person test];
// --------- c++底层代码
((void (*)(id, SEL))(void *)objc_msgSend)((id)person, sel_registerName("test"));
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m
查看上述源码可以看出c++底层代码中方法调用其实都转化为objc_msgSend
函数,OC的方法调用也叫消息机制,表示给方法调用者发送消息。
上述代码实际为给person实例对象发送一条test消息。
消息接收者:person
消息名称:test
在方法调用的过程中可以分为三个阶段
1.消息发送阶段
:负责从类及父类的缓存列表及方法列表中查找方法。
2.动态解析阶段
:如果消息发送阶段没有找到方法,则会进入动态解析阶段,负责动态添加方法实现。
3.消息转发阶段
:如果动态解析阶段也没有添加方法实现,则会进行消息转发阶段,将消息转发给可以处理消息的接受者来处理。
4.如果消息转发也没实现,就会报方法找不到的错误,unrecognzied selector sent to instance
。
接下来我们通过源码探寻消息发送的三个阶段分别是如何实现的。
二.消息发送机制
在runtime
源码中搜索_objc_msgSend
查看其内部实现,在objc-msg-arm64.s
汇编文件可以知道_objc_msgSend
函数的实现。
ENTRY _objc_msgSend
UNWIND _objc_msgSend, NoFrame
MESSENGER_START
cmp x0, #0 // nil check and tagged pointer check
b.le LNilOrTagged // (MSB tagged pointer looks negative)
ldr x13, [x0] // x13 = isa
and x16, x13, #ISA_MASK // x16 = class
LGetIsaDone:
CacheLookup NORMAL // calls imp or objc_msgSend_uncached
上述汇编源码中首先会判断消息接收者reveiver
的值,
如果reveiver为nil
则执行LNilOrTagged
,LNilOrTagged
内部会执行LReturnZero
,而LReturnZero
内部则直接return0
.
如果reveiver不为nil
则执行CacheLookup
,内部对方法缓存列表
进行查找,如果找到则执行CacheHit
,进而调用方法。否则执行CheckMiss
,CheckMiss
内部调用__objc_msgSend_uncached
。
__objc_msgSend_uncached
内会执行MethodTableLookup
也就是方法列表
查找,MethodTableLookup
内部的核心代码__class_lookupMethodAndLoadCache3
也就是c语言函数_class_lookupMethodAndLoadCache3
。c语言_class_lookupMethodAndLoadCache3
函数内部则是对方法查找的核心源代码。
用一张图总结一下汇编语言中_objc_msgSend的运行流程:
汇编语言-消息发送流程.png
方法查找的核心函数就是_class_lookupMethodAndLoadCache3
函数,接下来重点分析_class_lookupMethodAndLoadCache3
函数内的源码。
1._class_lookupMethodAndLoadCache3函数
IMP _class_lookupMethodAndLoadCache3(id obj, SEL sel, Class cls)
{
return lookUpImpOrForward(cls, sel, obj,
YES/*initialize*/, NO/*cache*/, YES/*resolver*/);
}
_class_lookupMethodAndLoadCache3
函数内部只返回lookUpImpOrForward
函数,接下来进入lookUpImpOrForward
函数。
2.lookUpImpOrForward 函数
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
// initialize = YES , cache = NO , resolver = YES
IMP imp = nil;
bool triedResolver = NO;
runtimeLock.assertUnlocked();
// 缓存查找, 因为cache传入的为NO, 这里不会进行缓存查找, 因为在汇编语言中CacheLookup已经查找过
if (cache) {
imp = cache_getImp(cls, sel);
if (imp) return imp;
}
runtimeLock.read();
if (!cls->isRealized()) {
runtimeLock.unlockRead();
runtimeLock.write();
realizeClass(cls);
runtimeLock.unlockWrite();
runtimeLock.read();
}
if (initialize && !cls->isInitialized()) {
runtimeLock.unlockRead();
_class_initialize (_class_getNonMetaClass(cls, inst));
runtimeLock.read();
}
retry:
runtimeLock.assertReading();
// 防止动态添加方法,缓存会变化,再次查找缓存。
imp = cache_getImp(cls, sel);
// 如果查找到imp, 直接调用done, 返回方法地址
if (imp) goto done;
// 查找方法列表, 传入类对象和方法名
{
// 根据sel去类对象里面查找方法
Method meth = getMethodNoSuper_nolock(cls, sel);
if (meth) {
// 如果方法存在,则缓存方法,
// 内部调用的就是 cache_fill 上文中已经详细讲解过这个方法,这里不在赘述了。
log_and_fill_cache(cls, meth->imp, sel, inst, cls);
// 方法缓存之后, 取出imp, 调用done返回imp
imp = meth->imp;
goto done;
}
}
// 如果类方法列表中没有找到, 则去父类的缓存中或方法列表中查找方法
{
unsigned attempts = unreasonableClassCount();
// 如果父类缓存列表及方法列表均找不到方法,则去父类的父类去查找。
for (Class curClass = cls->superclass;
curClass != nil;
curClass = curClass->superclass)
{
// Halt if there is a cycle in the superclass chain.
if (--attempts == 0) {
_objc_fatal("Memory corruption in class list.");
}
// 查找父类的缓存
imp = cache_getImp(curClass, sel);
if (imp) {
if (imp != (IMP)_objc_msgForward_impcache) {
// 在父类中找到方法, 在本类中缓存方法, 注意这里传入的是cls, 将方法缓存在本类缓存列表中, 而非父类中
log_and_fill_cache(cls, imp, sel, inst, curClass);
// 执行done, 返回imp
goto done;
}
else {
// 跳出循环, 停止搜索
break;
}
}
// 查找父类的方法列表
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
// 同样拿到方法, 在本类进行缓存
log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
imp = meth->imp;
// 执行done, 返回imp
goto done;
}
}
}
// ---------------- 消息发送阶段完成 ---------------------
// ---------------- 进入动态解析阶段 ---------------------
// 上述列表中都没有找到方法实现, 则尝试解析方法
if (resolver && !triedResolver) {
runtimeLock.unlockRead();
_class_resolveMethod(cls, sel, inst);
runtimeLock.read();
triedResolver = YES;
goto retry;
}
// ---------------- 动态解析阶段完成 ---------------------
// ---------------- 进入消息转发阶段 ---------------------
imp = (IMP)_objc_msgForward_impcache;
cache_fill(cls, sel, imp, inst);
done:
runtimeLock.unlockRead();
// 返回方法地址
return imp;
}
3.getMethodNoSuper_nolock 函数
方法列表中查找方法
getMethodNoSuper_nolock(Class cls, SEL sel)
{
runtimeLock.assertLocked();
assert(cls->isRealized());
// cls->data() 得到的是 class_rw_t
// class_rw_t->methods 得到的是methods二维数组
for (auto mlists = cls->data()->methods.beginLists(),
end = cls->data()->methods.endLists();
mlists != end;
++mlists)
{
// mlists 为 method_list_t
method_t *m = search_method_list(*mlists, sel);
if (m) return m;
}
return nil;
}
上述源码中,getMethodNoSuper_nolock
函数中通过遍历方法列表拿到method_list_t
最终通过search_method_list
函数查找方法。
4. search_method_list函数
static method_t *search_method_list(const method_list_t *mlist, SEL sel)
{
int methodListIsFixedUp = mlist->isFixedUp();
int methodListHasExpectedSize = mlist->entsize() == sizeof(method_t);
// 如果方法列表是有序的,则使用二分法查找方法,节省时间
if (__builtin_expect(methodListIsFixedUp && methodListHasExpectedSize, 1)) {
return findMethodInSortedMethodList(sel, mlist);
} else {
// 否则则遍历列表查找
for (auto& meth : *mlist) {
if (meth.name == sel) return &meth;
}
}
return nil;
}
5. findMethodInSortedMethodList函数
findMethodInSortedMethodList
函数内二分查找实现原理
static method_t *findMethodInSortedMethodList(SEL key, const method_list_t *list)
{
assert(list);
const method_t * const first = &list->first;
const method_t *base = first;
const method_t *probe;
uintptr_t keyValue = (uintptr_t)key;
uint32_t count;
// >>1 表示将变量n的各个二进制位顺序右移1位,最高位补二进制0。
// count >>= 1 如果count为偶数则值变为(count / 2)。如果count为奇数则值变为(count-1) / 2
for (count = list->count; count != 0; count >>= 1) {
// probe 指向数组中间的值
probe = base + (count >> 1);
// 取出中间method_t的name,也就是SEL
uintptr_t probeValue = (uintptr_t)probe->name;
if (keyValue == probeValue) {
// 取出 probe
while (probe > first && keyValue == (uintptr_t)probe[-1].name) {
probe--;
}
// 返回方法
return (method_t *)probe;
}
// 如果keyValue > probeValue 则折半向后查询
if (keyValue > probeValue) {
base = probe + 1;
count--;
}
}
return nil;
}
到此为止,1.消息发送阶段
已经完成。
我们通过一张图来看一下_class_lookupMethodAndLoadCache3
函数内部消息发送的整个流程
如果消息发送阶段没有找到方法,就会进入动态解析方法阶段。
一.动态解析过程
当本类包括父类cache
包括class_rw_t
中都找不到方法时,就会进入2.动态解析阶段
,一起看一下动态解析阶段。
动态解析方法
if (resolver && !triedResolver) {
runtimeLock.unlockRead();
_class_resolveMethod(cls, sel, inst);
runtimeLock.read();
// Don't cache the result; we don't hold the lock so it may have
// changed already. Re-do the search from scratch instead.
triedResolver = YES;
goto retry;
}
1. _class_resolveMethod函数
_class_resolveMethod
函数内部,根据类对象或者元类对象做不同的操作。
void _class_resolveMethod(Class cls, SEL sel, id inst)
{
if (! cls->isMetaClass()) {
// try [cls resolveInstanceMethod:sel]
_class_resolveInstanceMethod(cls, sel, inst);
}
else {
// try [nonMetaClass resolveClassMethod:sel]
// and [cls resolveInstanceMethod:sel]
_class_resolveClassMethod(cls, sel, inst);
if (!lookUpImpOrNil(cls, sel, inst,
NO/*initialize*/, YES/*cache*/, NO/*resolver*/))
{
_class_resolveInstanceMethod(cls, sel, inst);
}
}
}
上述代码中可以发现,动态解析方法之后,会将triedResolver = YES;
那么下次就不会进行动态解析阶段了,之后会重新执行retry
,会重新对方法查找一遍。也就是说无论我们是否实现动态解析方法,无论动态解析方法是否成功,retry
之后都不会再进行动态的解析方法了。
如何动态解析方法
动态解析
实例方法
时,会调用+(BOOL)resolveInstanceMethod:(SEL)sel
方法。
动态解析类方法
时,会调用+(BOOL)resolveClassMethod:(SEL)sel
方法
这里以实例对象为例通过代码来看一下动态解析的过程
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
MJPerson *person = [MJPerson new];
[person test];//第一次调用走resolveInstanceMethod方法
}
@end
@implementation Person
- (void) other {
NSLog(@"我是消息转发添加的方法%s", __func__);
}
+ (BOOL)resolveInstanceMethod:(SEL)sel
{
// 动态的添加方法实现
if (sel == @selector(test)) {
// 获取其他方法 指向method_t的指针
Method otherMethod = class_getInstanceMethod(self, @selector(other));
// 动态添加test方法的实现
class_addMethod(self, sel, method_getImplementation(otherMethod), method_getTypeEncoding(otherMethod));
// 返回YES表示有动态添加方法
return YES;
}
NSLog(@"%s", __func__);
return [super resolveInstanceMethod:sel];
}
@end
//打印结果如下:
我是消息转发添加的方法-[MJPerson other]
上述代码中可以看出,person
在调用test
方法时经过动态解析成功调用了other
方法。
通过上面对消息发送的分析我们知道,当本类和父类的cache
和class_rw_t
都找不到方法时,就会进入动态解析阶段
,也就是说会自动调用NSObject
类的resolveInstanceMethod:
方法进行动态查找,因为我们可以在resolveInstanceMethod:
方法内部使用class_addMethod
动态添加方法实现。
这里需要注意的是class_addMethod
用来向具有给定名称
和实现
的类
添加新方法
,class_addMethod
将添加一个方法实现的覆盖,但是不会替换已有的实现,也就是说如果上述代码中已经实现了-(void)test
方法, 则不会再动态添加方法,这点在上述源码中也可以体现,因为一旦找到方法实现就直接return imp
并调用方法了,不会再执行动态解析方法了。
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
MJPerson *person = [MJPerson new];
[person test];//第一次调用走resolveInstanceMethod方法
[person test];//第二次调用直接走-(void)other 方法
}
@end
1.class_addMethod 函数
我们来看一下class_addMethod
函数的参数分别代表什么呢?
/**
第一个参数: cls:给哪个类添加方法
第二个参数: SEL name:添加方法的名称
第三个参数: IMP imp: 方法的实现,函数入口,函数名可与方法名不同(建议与方法名相同)
第四个参数: types :方法类型,需要用特定符号,参考API
*/
class_addMethod(__unsafe_unretained Class cls, SEL name, IMP imp, const char *types)
需要注意的是我们在上述代码中通过class_getInstanceMethod
获取Method
的方法。
// 获取其他方法 指向method_t的指针
Method otherMethod = class_getInstanceMethod(self, @selector(other));
其中Method
是objc_method
结构体指针类型,typedef struct objc_method *Method
,内部包含SEL、type、IMP
,我们通过自定义method_t
结构体,将objc_method
强转为method_t
查看方式是否动态添加成功。
struct method_t {
SEL sel;
char *types;
IMP imp;
};
- (void) other {
NSLog(@"我是消息转发添加的方法%s", __func__);
}
+ (BOOL)resolveInstanceMethod:(SEL)sel
{
// 动态的添加方法实现
if (sel == @selector(test)) {
// Method强转为method_t
struct method_t *method = (struct method_t *)class_getInstanceMethod(self, @selector(other));
NSLog(@"%s,%p,%s",method->sel,method->imp,method->types);
// 动态添加test方法的实现
class_addMethod(self, sel, method->imp, method->types);
// 返回YES表示有动态添加方法
return YES;
}
NSLog(@"%s", __func__);
return [super resolveInstanceMethod:sel];
}
//打印结果如下:
other,0x100000d00,v16@0:8
我是消息转发添加的方法-[MJPerson other]
可以看出确实可以打印出相关信息,那么我们就可以理解为objc_method
内部结构同method_t
结构相同,可以代表类定义中的方法。
另外上述代码中国我们通过method_getImplementation
函数和method_getTypeEncoding
函数获取方法的IMP
和Type
。当然我们也可以通过自己写的方式来调用,这里以动态添加有参数的方式为例。
+(BOOL)resolveInstanceMethod:(SEL)sel
{
if (sel == @selector(eat:)) {
class_addMethod(self, sel, (IMP)cook, "v@:@");
return YES;
}
return [super resolveInstanceMethod:sel];
}
void cook(id self ,SEL _cmd,id Num)
{
// 实现内容
NSLog(@"%@的%@方法动态实现了,参数为%@",self,NSStringFromSelector(_cmd),Num);
}
上述代码中调用eat:
方法时,动态添加cook
函数作为其实现并添加id类型的参数。
动态解析类方法
当动态解析类方法的时候,就会调用+(BOOL)resolveClassMethod:(SEL)sel
函数,而我们知道类方法是存储在元类对象
里面的,因此cls第一个对象需要传入元类对象以下代码为例。
void other(id self, SEL _cmd)
{
NSLog(@"other - %@ - %@", self, NSStringFromSelector(_cmd));
}
+ (BOOL)resolveClassMethod:(SEL)sel
{
if (sel == @selector(test)) {
// 第一个参数是object_getClass(self),传入元类对象。
class_addMethod(object_getClass(self), sel, (IMP)other, "v16@0:8");
return YES;
}
return [super resolveClassMethod:sel];
}
我们在上述源码的分析中提到过,无论我们是否实现了动态解析的方法,系统内部都会执行retry
对方法再次进行查找,那么如果我们实现了动态解析方法,此时就会顺利查找到方法,进而返回imp
对方法进行调用。如果我们没有实现动态解析方法。就会进行消息转发。
接下来用一张图总结动态解析阶段的流程
动态解析方法流程图.png
三.消息转发机制
如果我们自己没有对方法进行动态解析,那么就会进行消息转发。
imp = (IMP)_objc_msgForward_impcache;
cache_fill(cls, sel, imp, inst);
自己没有能力处理这个消息的时候,就会进行消息转发阶段,会调用_objc_msgForward_impcache
函数。
通过搜索可以在汇编中找到_objc_msgForward_impcache
函数实现,_objc_msgForward_impcache
函数中调用__objc_msgForward
进而找到__objc_forward_handler
.
objc_defaultForwardHandler(id self, SEL sel)
{
_objc_fatal("%c[%s %s]: unrecognized selector sent to instance %p "
"(no message forward handler is installed)",
class_isMetaClass(object_getClass(self)) ? '+' : '-',
object_getClassName(self), sel_getName(sel), self);
}
void *_objc_forward_handler = (void*)objc_defaultForwardHandler;
我们发现这仅仅是一个错误信息的输出。
其实消息转发机制是不开源的,但是我们可以猜测其中可能拿饭回的对象调用了objc_msgSend
,重走了一遍消息发送,动态解析,消息转发的过程,最终找到方法进行调用。
我们通过代码来看一下,首先创建Car
类继承自NSObject
,并且Car
有一个- (void) driving
方法,当Person
类实例对象失去了驾车的能力,并且没有在开车过程中动态的学会驾车,那么此时就会将开车这条信息转发给Car
,由Car
实例对象来帮助person
对象驾车。
#import "Car.h"
@implementation Car
- (void) driving
{
NSLog(@"car driving");
}
@end
--------------
#import "Person.h"
#import <objc/runtime.h>
#import "Car.h"
@implementation Person
- (id)forwardingTargetForSelector:(SEL)aSelector
{
// 返回能够处理消息的对象
if (aSelector == @selector(driving)) {
return [[Car alloc] init];
}
return [super forwardingTargetForSelector:aSelector];
}
@end
--------------
#import<Foundation/Foundation.h>
#import "Person.h"
int main(int argc, const char * argv[]) {
@autoreleasepool {
Person *person = [[Person alloc] init];
[person driving];
}
return 0;
}
// 打印结果如下
我是消息转发 car driving
由上述代码可以看出,当person类没有实现- (void) driving
方法,也没有动态解析添加方法+ (BOOL)resolveInstanceMethod:(SEL)sel
,就会调用forwardingTargetForSelector
函数,进行消息转发时,我们可以实现forwardingTargetForSelector
函数,在其内部将消息转发给可以实现此方法的对象。
如果forwardingTargetForSelector
函数返回为nil
或者没有实现的话,就会调用methodSignatureForSelector
方法,用于返回一个方法签名,也就是我们正确跳转方法的最后机会。
如果methodSignatureForSelector
方法返回正确的方法签名就会调用forwardInvocation
方法,forwardInvocation
方法内部提供一个NSInvocation
类型的参数,NSInvocation
封装了方法的调用者 receiver,方法名,以及方法参数
。在forwardInvocation
函数内部修改方法调用对象即可。
如果methodSignatureForSelector
函数为nil
,就会来到doseNotRecognizeSelector:
方法内部,程序crash,提示报错unrecognized selector sent to instance
。
我们还是通过代码验证
- (id)forwardingTargetForSelector:(SEL)aSelector
{
// 返回能够处理消息的对象
if (aSelector == @selector(driving)) {
// 返回nil则会调用methodSignatureForSelector方法
return nil;
// return [[Car alloc] init];
}
return [super forwardingTargetForSelector:aSelector];
}
// 方法签名:返回值类型、参数类型
- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
{
if (aSelector == @selector(driving)) {
// return [NSMethodSignature signatureWithObjCTypes: "v@:"];
// return [NSMethodSignature signatureWithObjCTypes: "v16@0:8"];
// 也可以通过调用Car的methodSignatureForSelector方法得到方法签名,这种方式需要car对象有aSelector方法
return [[[Car alloc] init] methodSignatureForSelector: aSelector];
}
return [super methodSignatureForSelector:aSelector];
}
//NSInvocation 封装了一个方法调用,包括:方法调用者,方法,方法的参数
// anInvocation.target 方法调用者
// anInvocation.selector 方法名
// [anInvocation getArgument: NULL atIndex: 0]; 获得参数
- (void)forwardInvocation:(NSInvocation *)anInvocation
{
// anInvocation中封装了methodSignatureForSelector函数中返回的方法。
// 此时anInvocation.target 还是person对象,我们需要修改target为可以执行方法的方法调用者。
// anInvocation.target = [[Car alloc] init];
// [anInvocation invoke];
[anInvocation invokeWithTarget: [[Car alloc] init]];
}
// 打印内容
我是消息转发 car driving
我们通过一张图总结消息转发阶段的流程:
消息转发阶段流程图.png
NSInvocation
methodSignatureForSelector
方法中返回的方法签名,在methodSignatureForSelector
中被包装成NSInvocation
对象,NSInvocation
提供了获取和修改方法名,参数,返回值
等方法,也就是说,在forwardInvocation
函数中我们可以对方法进行最后的修改。
同样上述代码,我们为-(void)driving
方法添加返回值和参数,并在forwardInvocation
方法中修改方法的返回值及参数。
#import "Car.h"
@implementation Car
- (int) driving:(int)time
{
NSLog(@"我是消息转发 car driving");
NSLog(@"car driving %d",time);
return time * 2;
}
@end
#import "Person.h"
#import <objc/runtime.h>
#import "Car.h"
@implementation Person
- (id)forwardingTargetForSelector:(SEL)aSelector
{
// 返回能够处理消息的对象
if (aSelector == @selector(driving)) {
return nil;
}
return [super forwardingTargetForSelector:aSelector];
}
// 方法签名:返回值类型、参数类型
- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
{
if (aSelector == @selector(driving:)) {
// 添加一个int参数及int返回值type为 i@:i
return [NSMethodSignature signatureWithObjCTypes: "i@:i"];
}
return [super methodSignatureForSelector:aSelector];
}
//NSInvocation 封装了一个方法调用,包括:方法调用者,方法,方法的参数
- (void)forwardInvocation:(NSInvocation *)anInvocation
{
int time;
// 获取方法的参数,方法默认还有self和cmd两个参数,因此新添加的参数下标为2
[anInvocation getArgument: &time atIndex: 2];
NSLog(@"修改前参数的值 = %d",time);
time = time + 10; // time = 110
NSLog(@"修改前参数的值 = %d",time);
// 设置方法的参数 此时将参数设置为110
[anInvocation setArgument: &time atIndex:2];
// 将tagert设置为Car实例对象
[anInvocation invokeWithTarget: [[Car alloc] init]];
// 获取方法的返回值
int result;
[anInvocation getReturnValue: &result];
NSLog(@"获取方法的返回值 = %d",result); // result = 220,说明参数修改成功
result = 99;
// 设置方法的返回值 重新将返回值设置为99
[anInvocation setReturnValue: &result];
// 获取方法的返回值
[anInvocation getReturnValue: &result];
NSLog(@"修改方法的返回值为 = %d",result); // result = 99
}
#import<Foundation/Foundation.h>
#import "Person.h"
int main(int argc, const char * argv[]) {
@autoreleasepool {
Person *person = [[Person alloc] init];
// 传入100,并打印返回值
NSLog(@"[person driving: 100] = %d",[person driving: 100]);
}
return 0;
}
打印结果如下:
消息转发demo[13639:2680931] 修改前参数的值 = 100
消息转发demo[13639:2680931] 修改前参数的值 = 110
消息转发demo[13639:2680931] 我是消息转发 car driving
消息转发demo[13639:2680931] car driving 110
消息转发demo[13639:2680931] 获取方法的返回值 = 220
消息转发demo[13639:2680931] 修改方法的返回值为 = 99
从上述打印结果可以看出forwardInvocation
方法中可以对方法的参数及返回值进行修改。
并且我们发现,在设置tagert
为Car
实例对象时,就已经对方法进行了调用,而forwardInvocation
方法结束之后才输出返回值。
通过上述验证我们可以知道只要来到forwardInvocation
方法中,我们便对方法调用又了绝对的掌控权,可以选择是否调用方法,以及修改方法的参数返回值等等。
四.类方法消息转发过程
类方法消息发送同对象方法消息发送机制一样,同样需要1.消息发送阶段
,2.动态解析阶段
,3.消息转发阶段
。
当实例方法进行消息转发时,会调用
- forwardingTargetForSelector ,- methodSignatureForSelector ,- forwardInvocation
方法。
当类对象进行消息转发时,会调用+ forwardingTargetForSelector ,+ methodSignatureForSelector ,+ forwardInvocation
方法。
注意类方法消息转发的三个方法直接打不出来,就导致网上有一些错误的信息说类方法不支持消息转发,这是不正确的。
下面通过一段代码查看类方法的消息转发机制
int main(int argc, const char * argv[]) {
@autoreleasepool {
[Person driving];
}
return 0;
}
#import "Car.h"
@implementation Car
+ (void) driving;
{
NSLog(@"我是消息转发 car driving");
}
@end
#import "Person.h"
#import <objc/runtime.h>
#import "Car.h"
@implementation Person
+ (id)forwardingTargetForSelector:(SEL)aSelector
{
// 返回能够处理消息的对象
if (aSelector == @selector(driving)) {
// 这里需要返回类对象
return [Car class];
}
return [super forwardingTargetForSelector:aSelector];
}
// 如果forwardInvocation函数中返回nil 则执行下列代码
// 方法签名:返回值类型、参数类型
+ (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
{
if (aSelector == @selector(driving)) {
return [NSMethodSignature signatureWithObjCTypes: "v@:"];
}
return [super methodSignatureForSelector:aSelector];
}
+ (void)forwardInvocation:(NSInvocation *)anInvocation
{
[anInvocation invokeWithTarget: [Car class]];
}
// 打印结果
我是消息转发 car driving
带参数的消息转发也能实现
#import "Car.h"
@implementation Car
+ (int) driving:(int)time
{
NSLog(@"我是消息转发 car driving");
NSLog(@"car driving %d",time);
return time * 2;
}
@end
#import "Person.h"
#import <objc/runtime.h>
#import "Car.h"
@implementation Person
+ (id)forwardingTargetForSelector:(SEL)aSelector
{
// 返回能够处理消息的对象
if (aSelector == @selector(driving)) {
return nil;
}
return [super forwardingTargetForSelector:aSelector];
}
// 方法签名:返回值类型、参数类型
+ (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
{
if (aSelector == @selector(driving:)) {
// 添加一个int参数及int返回值type为 i@:i
return [NSMethodSignature signatureWithObjCTypes: "i@:i"];
}
return [super methodSignatureForSelector:aSelector];
}
//NSInvocation 封装了一个方法调用,包括:方法调用者,方法,方法的参数
+ (void)forwardInvocation:(NSInvocation *)anInvocation
{
int time;
// 获取方法的参数,方法默认还有self和cmd两个参数,因此新添加的参数下标为2
[anInvocation getArgument: &time atIndex: 2];
NSLog(@"修改前参数的值 = %d",time);
time = time + 10; // time = 110
NSLog(@"修改前参数的值 = %d",time);
// 设置方法的参数 此时将参数设置为110
[anInvocation setArgument: &time atIndex:2];
// 将tagert设置为Car类对象
[anInvocation invokeWithTarget: [Car class]];
// 获取方法的返回值
int result;
[anInvocation getReturnValue: &result];
NSLog(@"获取方法的返回值 = %d",result); // result = 220,说明参数修改成功
result = 99;
// 设置方法的返回值 重新将返回值设置为99
[anInvocation setReturnValue: &result];
// 获取方法的返回值
[anInvocation getReturnValue: &result];
NSLog(@"修改方法的返回值为 = %d",result); // result = 99
}
#import<Foundation/Foundation.h>
#import "Person.h"
int main(int argc, const char * argv[]) {
@autoreleasepool {
// 传入100,并打印返回值
NSLog(@"[Person driving: 100] = %d",[Person driving: 100]);
}
return 0;
}
打印结果如下:
消息转发demo[13639:2680931] 修改前参数的值 = 100
消息转发demo[13639:2680931] 修改前参数的值 = 110
消息转发demo[13639:2680931] 我是消息转发 car driving
消息转发demo[13639:2680931] car driving 110
消息转发demo[13639:2680931] 获取方法的返回值 = 220
消息转发demo[13639:2680931] 修改方法的返回值为 = 99
总结
OC中的方法调用其实都是转成了
objc_msgSend
函数的调用,给receiver
(方法调用者)发送了一条消息(selector方法名
)。方法调用过程中也就是objc_msgSend
底层实现分为三个阶段:1.消息发送阶段、2.动态解析阶段、3.消息转发阶段。
本篇学习先记录到此,感谢阅读,如有错误,不吝赐教。
网友评论