美文网首页
Datawhale 零基础入门CV赛事-Task5 模型集成

Datawhale 零基础入门CV赛事-Task5 模型集成

作者: 致Great | 来源:发表于2020-06-02 23:14 被阅读0次

5 模型集成

本章讲解的知识点包括:集成学习方法、深度学习中的集成学习和结果后处理思路。

5.1 学习目标

  • 学习集成学习方法以及交叉验证情况下的模型集成
  • 学会使用深度学习模型的集成学习

5.2 集成学习方法

在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。

由于深度学习模型一般需要较长的训练周期,如果硬件设备不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。

下面假设构建了10折交叉验证,训练得到10个CNN模型。
[图片上传失败...(image-481bc3-1591110843409)]

那么在10个CNN模型可以使用如下方式进行集成:

  • 对预测的结果的概率值进行平均,然后解码为具体字符;
  • 对预测的字符进行投票,得到最终字符。

5.3 深度学习中的集成学习

此外在深度学习中本身还有一些集成学习思路的做法,值得借鉴学习:

5.3.1 Dropout

Dropout可以作为训练深度神经网络的一种技巧。在每个训练批次中,通过随机让一部分的节点停止工作。同时在预测的过程中让所有的节点都其作用。
[图片上传失败...(image-4e7eb4-1591110843409)]

Dropout经常出现在在先有的CNN网络中,可以有效的缓解模型过拟合的情况,也可以在预测时增加模型的精度。

加入Dropout后的网络结构如下:

# 定义模型
class SVHN_Model1(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
        # CNN提取特征模块
        self.cnn = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(),
            nn.Dropout(0.25),
            nn.MaxPool2d(2),
            nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(), 
            nn.Dropout(0.25),
            nn.MaxPool2d(2),
        )
        # 
        self.fc1 = nn.Linear(32*3*7, 11)
        self.fc2 = nn.Linear(32*3*7, 11)
        self.fc3 = nn.Linear(32*3*7, 11)
        self.fc4 = nn.Linear(32*3*7, 11)
        self.fc5 = nn.Linear(32*3*7, 11)
        self.fc6 = nn.Linear(32*3*7, 11)
    
    def forward(self, img):        
        feat = self.cnn(img)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        c6 = self.fc6(feat)
        return c1, c2, c3, c4, c5, c6

5.3.2 TTA

测试集数据扩增(Test Time Augmentation,简称TTA)也是常用的集成学习技巧,数据扩增不仅可以在训练时候用,而且可以同样在预测时候进行数据扩增,对同一个样本预测三次,然后对三次结果进行平均。

1 2 3
[图片上传失败...(image-6111b8-1591110843409)] [图片上传失败...(image-3b4d78-1591110843409)] [图片上传失败...(image-30769c-1591110843409)]
def predict(test_loader, model, tta=10):
   model.eval()
   test_pred_tta = None
   # TTA 次数
   for _ in range(tta):
       test_pred = []
   
       with torch.no_grad():
           for i, (input, target) in enumerate(test_loader):
               c0, c1, c2, c3, c4, c5 = model(data[0])
               output = np.concatenate([c0.data.numpy(), c1.data.numpy(),
                  c2.data.numpy(), c3.data.numpy(),
                  c4.data.numpy(), c5.data.numpy()], axis=1)
               test_pred.append(output)
       
       test_pred = np.vstack(test_pred)
       if test_pred_tta is None:
           test_pred_tta = test_pred
       else:
           test_pred_tta += test_pred
   
   return test_pred_tta

5.3.3 Snapshot

本章的开头已经提到,假设我们训练了10个CNN则可以将多个模型的预测结果进行平均。但是加入只训练了一个CNN模型,如何做模型集成呢?

在论文Snapshot Ensembles中,作者提出使用cyclical learning rate进行训练模型,并保存精度比较好的一些checkopint,最后将多个checkpoint进行模型集成。
[图片上传失败...(image-dfb93b-1591110843410)]

由于在cyclical learning rate中学习率的变化有周期性变大和减少的行为,因此CNN模型很有可能在跳出局部最优进入另一个局部最优。在Snapshot论文中作者通过使用表明,此种方法可以在一定程度上提高模型精度,但需要更长的训练时间。
[图片上传失败...(image-424fb7-1591110843410)]

5.4 结果后处理

在不同的任务中可能会有不同的解决方案,不同思路的模型不仅可以互相借鉴,同时也可以修正最终的预测结果。

在本次赛题中,可以从以下几个思路对预测结果进行后处理:

  • 统计图片中每个位置字符出现的频率,使用规则修正结果;
  • 单独训练一个字符长度预测模型,用来预测图片中字符个数,并修正结果。

5.5 本章小节

在本章中我们讲解了深度学习模型做集成学习的各种方法,并以此次赛题为例讲解了部分代码。以下几点需要同学们注意:

  • 集成学习只能在一定程度上提高精度,并需要耗费较大的训练时间,因此建议先使用提高单个模型的精度,再考虑集成学习过程;
  • 具体的集成学习方法需要与验证集划分方法结合,Dropout和TTA在所有场景有可以起作用。

相关文章

  • Datawhale 零基础入门CV赛事-Task5 模型集成

    最后一章,将会学习如何使用集成学习提高预测精度,通过学习知道集成学习方法以及交叉验证情况下的模型集成,最终学会使用...

  • Datawhale 零基础入门CV赛事-Task5 模型集成

    5 模型集成 本章讲解的知识点包括:集成学习方法、深度学习中的集成学习和结果后处理思路。 5.1 学习目标 学习集...

  • Datawhale 零基础入门CV赛事-Task5 模型集成

    集成学习 集成学习只能在一定程度上提高精度,并需要耗费较大的训练时间,因此建议先使用提高单个模型的精度,再考虑集成...

  • cv街景门牌字符的赛题理解

    Datawhale 零基础入门CV赛事-Task1 赛题理解 1 赛题理解 赛题名称:零基础入门CV之街道字符识别...

  • 思绪·随笔(11)

    这段时间参加了datawhale 的零基础入门CV赛事,学到了很多东西,对之前不懂的东西理解更加清晰了,就需要多参...

  • 贷款违约预测-Task5 模型融合

    Task5 模型融合 Tip:此部分为零基础入门金融风控的 Task5 模型融合部分,欢迎大家后续多多交流。赛题:...

  • Task01: 计算机视觉赛题理解

    零基础入门CV赛事- 街景字符编码识别 赛事报名页面 数据下载链接 来自SVHN数据集 filesizelinkm...

  • Task1 赛题理解

    1. 理解赛题背景 零基础入门系列赛事第二场 :零基础入门CV赛事之街景字符识别 典型计算机视觉识别:预测真实场景...

  • Task01:赛题理解

    一、赛题背景 本次新人赛是Datawhale与天池联合发起的0基础入门系列赛事第四场 —— 零基础入门金融风控-贷...

  • 贷款违约预测-Task1 赛题理解

    Task1 赛题理解 Tip:本次新人赛是Datawhale与天池联合发起的0基础入门系列赛事第四场 —— 零基础...

网友评论

      本文标题:Datawhale 零基础入门CV赛事-Task5 模型集成

      本文链接:https://www.haomeiwen.com/subject/xismzhtx.html