下载Stanford CoreNLP的压缩包,地址:https://stanfordnlp.github.io/CoreNLP/api.html
新建java项目,引入压缩包里的jar包(project右键——>build Path——>Configure BuildPath——>libraries——>add external jars)选中压缩包文件夹里的jar文件,引入即可。
新建class文件:
package com.ww.corenlp;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import edu.stanford.nlp.dcoref.CorefChain;
import edu.stanford.nlp.dcoref.CorefCoreAnnotations.CorefChainAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.LemmaAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.NamedEntityTagAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.PartOfSpeechAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.TextAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.TokensAnnotation;
import edu.stanford.nlp.ling.CoreLabel;
import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import edu.stanford.nlp.semgraph.SemanticGraph;
import edu.stanford.nlp.semgraph.SemanticGraphCoreAnnotations.CollapsedCCProcessedDependenciesAnnotation;
import edu.stanford.nlp.sentiment.SentimentCoreAnnotations;
import edu.stanford.nlp.trees.Tree;
import edu.stanford.nlp.trees.TreeCoreAnnotations.TreeAnnotation;
import edu.stanford.nlp.util.CoreMap;
public class TestNLP {
public static void main(String[] args) {
// creates a StanfordCoreNLP object, with POS tagging, lemmatization, NER, parsing, and coreference resolution
Properties props = new Properties();
props.put("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
// read some text in the text variable
String text = "Mrs. Clinton previously worked for Mr. Obama, but she is now distancing herself from him";
// create an empty Annotation just with the given text
Annotation document = new Annotation(text);
// run all Annotators on this text
pipeline.annotate(document);
// these are all the sentences in this document
// a CoreMap is essentially a Map that uses class objects as keys and has values with custom types
List<CoreMap> sentences = document.get(SentencesAnnotation.class);
System.out.println("word\t pos\t lemma\t ner");
for(CoreMap sentence: sentences) {
// traversing the words in the current sentence
// a CoreLabel is a CoreMap with additional token-specific methods
for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
// this is the text of the token
String word = token.get(TextAnnotation.class);
// this is the POS tag of the token
String pos = token.get(PartOfSpeechAnnotation.class);
// this is the NER label of the token
String ne = token.get(NamedEntityTagAnnotation.class);
String lemma = token.get(LemmaAnnotation.class);
System.out.println(word+"\t"+pos+"\t"+lemma+"\t"+ne);
}
// this is the parse tree of the current sentence
// 句子的解析树
Tree tree = sentence.get(TreeAnnotation.class);
System.out.println("\nparse tree:");
tree.pennPrint();
// this is the Stanford dependency graph of the current sentence
// 句子的依赖图
SemanticGraph dependencies = sentence.get(CollapsedCCProcessedDependenciesAnnotation.class);
System.out.println("\ndependencies:");
System.out.println(dependencies.toString(SemanticGraph.OutputFormat.LIST));
}
// This is the coreference link graph
// Each chain stores a set of mentions that link to each other,
// along with a method for getting the most representative mention
// Both sentence and token offsets start at 1!
Map<Integer, CorefChain> graph = document.get(CorefChainAnnotation.class);
}
}
针对Advances in natural language processing论文中提到的句子做处理:
Mrs. Clinton previously worked for Mr. Obama, but she is now distancing herself from him
可以在官方的在线demo上尝试:
http://nlp.stanford.edu:8080/parser/index.jsp
得到结果为:
word pos lemma ner
Mrs. NNP Mrs. O
Clinton NNP Clinton PERSON
previously RB previously DATE
worked VBD work O
for IN for O
Mr. NNP Mr. O
Obama NNP Obama PERSON
, , , O
but CC but O
she PRP she O
is VBZ be O
now RB now DATE
distancing VBG distance O
herself PRP herself O
from IN from O
him PRP he O
parse tree:
(ROOT
(FRAG
(S
(S
(NP (NNP Mrs.) (NNP Clinton))
(ADVP (RB previously))
(VP (VBD worked)
(PP (IN for)
(NP (NNP Mr.) (NNP Obama)))))
(, ,)
(CC but)
(S
(NP (PRP she))
(VP (VBZ is)
(ADVP (RB now))
(VP (VBG distancing)
(NP (PRP herself))
(PP (IN from)
(NP (PRP him)))))))))
dependencies:
root(ROOT-0, worked-4)
compound(Clinton-2, Mrs.-1)
nsubj(worked-4, Clinton-2)
advmod(worked-4, previously-3)
case(Obama-7, for-5)
compound(Obama-7, Mr.-6)
nmod:for(worked-4, Obama-7)
punct(worked-4, ,-8)
cc(worked-4, but-9)
nsubj(distancing-13, she-10)
aux(distancing-13, is-11)
advmod(distancing-13, now-12)
conj:but(worked-4, distancing-13)
dobj(distancing-13, herself-14)
case(him-16, from-15)
nmod:from(distancing-13, him-16)
同论文中效果对比:
Paste_Image.png引用:REVIEW
Advances in natural language processing Julia Hirschberg 1 and Christopher D. Manning 2,3
以上:
祝好!
网友评论