美文网首页机器学习
[图像算法]-(yolov5.train)-YOLOV5训练代码

[图像算法]-(yolov5.train)-YOLOV5训练代码

作者: 六千宛 | 来源:发表于2021-04-10 12:47 被阅读0次

          YOLOV5训练代码train.py注释与解析

    2020.8月版本

      超参数文件hyp解析
      训练参数以及main函数解析
      train函数解析

    2020.7月版本

      训练参数以及main函数解析
      train函数解析

      本文主要对ultralytics\yolov5的训练代码train.py的解析,由于yolov5还在开发当中,平常多多少少都会修复一些bug或者有一些代码和功能的更新,但基本上不会有很大的改动,故以下注释与解析都是适用的;当然如果有大改动,笔者也会更新注释。

                        yolov5其他代码解析


    2021.4.11
    1.更新了最新的代码解析注释(其实也不算最最新的,是这周一clone的代码, 最近比较忙,今天才把注释完成,主要在于添加了分布式计算的一些代码,以及更新了一些小细节的东西;
    2.由于笔者目前还没试用过分布式训练的代码,可能对这方面代码理解不是很好,如有问题欢迎指正,谢谢;
    3.以前版本的注释我也会留着;


                [新版本]

    1.超参数文件hyp解析

    # Hyperparameters for VOC finetuning
    # python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
    # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
    
    
    # Hyperparameter Evolution Results
    # Generations: 51
    #                   P         R     mAP.5 mAP.5:.95       box       obj       cls
    # Metrics:      0.625     0.926      0.89     0.677    0.0111   0.00849   0.00124
    
    lr0: 0.00447  # 学习率
    lrf: 0.114    # 余弦退火超参数
    momentum: 0.873 # 学习率动量
    weight_decay: 0.00047 # 权重衰减系数
    giou: 0.0306 # giou损失的系数
    cls: 0.211 # 分类损失的系数
    cls_pw: 0.546 # 分类BCELoss中正样本的权重
    obj: 0.421 # 有无物体损失的系数
    obj_pw: 0.972 # 有无物体BCELoss中正样本的权重
    iou_t: 0.2 # 标签与anchors的iou阈值iou training threshold
    anchor_t: 2.26 # 标签的长h宽w/anchor的长h_a宽w_a阈值, 即h/h_a, w/w_a都要在(1/2.26, 2.26)之间anchor-multiple threshold
    # anchors: 5.07
    fl_gamma: 0.0  # 设为0则表示不使用focal loss(efficientDet default is gamma=1.5)
    # 下面是一些数据增强的系数, 包括颜色空间和图片空间
    hsv_h: 0.0154 # 色调
    hsv_s: 0.9 # 饱和度
    hsv_v: 0.619 # 明度
    degrees: 0.404 #旋转角度
    translate: 0.206  # 水平和垂直平移
    scale: 0.86   # 缩放
    shear: 0.795  # 剪切
    perspective: 0.0  # 透视变换参数
    flipud: 0.00756  # 上下翻转
    fliplr: 0.5  # 左右翻转
    mixup: 0.153  # mixup系数
    

    2.训练参数以及main函数解析

    if __name__ == '__main__':
        """
        opt参数解析:
        cfg:模型配置文件,网络结构
        data:数据集配置文件,数据集路径,类名等
        hyp:超参数文件
        epochs:训练总轮次
        batch-size:批次大小
        img-size:输入图片分辨率大小
        rect:是否采用矩形训练,默认False
        resume:接着打断训练上次的结果接着训练
        nosave:不保存模型,默认False
        notest:不进行test,默认False
        noautoanchor:不自动调整anchor,默认False
        evolve:是否进行超参数进化,默认False
        bucket:谷歌云盘bucket,一般不会用到
        cache-images:是否提前缓存图片到内存,以加快训练速度,默认False
        weights:加载的权重文件
        name:数据集名字,如果设置:results.txt to results_name.txt,默认无
        device:训练的设备,cpu;0(表示一个gpu设备cuda:0);0,1,2,3(多个gpu设备)
        multi-scale:是否进行多尺度训练,默认False
        single-cls:数据集是否只有一个类别,默认False
        adam:是否使用adam优化器
        sync-bn:是否使用跨卡同步BN,在DDP模式使用
        local_rank:gpu编号
        logdir:存放日志的目录
        workers:dataloader的最大worker数量
        """
        parser = argparse.ArgumentParser()
        parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
        parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
        parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
        parser.add_argument('--hyp', type=str, default='', help='hyperparameters path, i.e. data/hyp.scratch.yaml')
        parser.add_argument('--epochs', type=int, default=300)
        parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
        parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
        parser.add_argument('--rect', action='store_true', help='rectangular training')
        parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
        parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
        parser.add_argument('--notest', action='store_true', help='only test final epoch')
        parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
        parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
        parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
        parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
        parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
        parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
        parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
        parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
        parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
        parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
        parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
        parser.add_argument('--logdir', type=str, default='runs/', help='logging directory')
        parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
        opt = parser.parse_args()
    
        # Set DDP variables
        """
        设置DDP模式的参数
        world_size:表示全局进程个数
        global_rank:进程编号
        """
        opt.total_batch_size = opt.batch_size
        opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
        opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
        set_logging(opt.global_rank)
        if opt.global_rank in [-1, 0]:
            # 检查你的代码版本是否为最新的(不适用于windows系统)
            check_git_status()
    
        # Resume
        # 是否resume
        if opt.resume:  # resume an interrupted run
            # 如果resume是str,则表示传入的是模型的路径地址
            # get_latest_run()函数获取runs文件夹中最近的last.pt
            ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent path
            log_dir = Path(ckpt).parent.parent  # runs/exp0
            assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
            # opt参数也全部替换
            with open(log_dir / 'opt.yaml') as f:
                opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader))  # replace
            # opt.cfg设置为'' 对应着train函数里面的操作(加载权重时是否加载权重里的anchor)
            opt.cfg, opt.weights, opt.resume = '', ckpt, True
            logger.info('Resuming training from %s' % ckpt)
    
        else:
            # 获取超参数列表
            opt.hyp = opt.hyp or ('data/hyp.finetune.yaml' if opt.weights else 'data/hyp.scratch.yaml')
            # 检查配置文件信息
            opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp)  # check files
            assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
            # 扩展image_size为[image_size, image_size]一个是训练size,一个是测试size
            opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
            # 根据opt.logdir生成目录
            log_dir = increment_dir(Path(opt.logdir) / 'exp', opt.name)  # runs/exp1
    
        # 选择设备
        device = select_device(opt.device, batch_size=opt.batch_size)
    
        # DDP mode
        # DDP 模式
        if opt.local_rank != -1:
            assert torch.cuda.device_count() > opt.local_rank
            # 根据gpu编号选择设备
            torch.cuda.set_device(opt.local_rank)
            device = torch.device('cuda', opt.local_rank)
            # 初始化进程组
            dist.init_process_group(backend='nccl', init_method='env://')  # distributed backend
            assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
            # 将总批次按照进程数分配给各个gpu
            opt.batch_size = opt.total_batch_size // opt.world_size
    
        # 打印opt参数信息
        logger.info(opt)
        # 加载超参数列表
        with open(opt.hyp) as f:
            hyp = yaml.load(f, Loader=yaml.FullLoader)  # load hyps
    
        # Train
        # 如果不进行超参数进化,则直接调用train()函数,开始训练
        if not opt.evolve:
            tb_writer = None
            if opt.global_rank in [-1, 0]:
                # 创建tensorboard
                logger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)
                tb_writer = SummaryWriter(log_dir=log_dir)  # runs/exp0
    
            train(hyp, opt, device, tb_writer)
    
        # Evolve hyperparameters (optional)
        else:
            # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
            # 超参数进化列表,括号里分别为(突变规模, 最小值,最大值)
            meta = {'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
                    'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
                    'momentum': (0.1, 0.6, 0.98),  # SGD momentum/Adam beta1
                    'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
                    'giou': (1, 0.02, 0.2),  # GIoU loss gain
                    'cls': (1, 0.2, 4.0),  # cls loss gain
                    'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
                    'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
                    'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
                    'iou_t': (0, 0.1, 0.7),  # IoU training threshold
                    'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
                    # 'anchors': (1, 2.0, 10.0),  # anchors per output grid (0 to ignore)
                    'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
                    'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
                    'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
                    'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
                    'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
                    'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
                    'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
                    'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
                    'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
                    'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
                    'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
                    'mixup': (1, 0.0, 1.0)}  # image mixup (probability)
    
            assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
            opt.notest, opt.nosave = True, True  # only test/save final epoch
            # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
            yaml_file = Path('runs/evolve/hyp_evolved.yaml')  # save best result here
            if opt.bucket:
                os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists
    
            # 默认进化100次
            """
            这里的进化算法是:根据之前训练时的hyp来确定一个base hyp再进行突变;
            如何根据?通过之前每次进化得到的results来确定之前每个hyp的权重
            有了每个hyp和每个hyp的权重之后有两种进化方式;
            1.根据每个hyp的权重随机选择一个之前的hyp作为base hyp,random.choices(range(n), weights=w)
            2.根据每个hyp的权重对之前所有的hyp进行融合获得一个base hyp,(x * w.reshape(n, 1)).sum(0) / w.sum()
            evolve.txt会记录每次进化之后的results+hyp
            每次进化时,hyp会根据之前的results进行从大到小的排序;
            再根据fitness函数计算之前每次进化得到的hyp的权重
            再确定哪一种进化方式,从而进行进化
            """
            for _ in range(100):  # generations to evolve
                if os.path.exists('evolve.txt'):  # if evolve.txt exists: select best hyps and mutate
                    # Select parent(s)
                    # 选择进化方式
                    parent = 'single'  # parent selection method: 'single' or 'weighted'
                    # 加载evolve.txt
                    x = np.loadtxt('evolve.txt', ndmin=2)
                    # 选取至多前5次进化的结果
                    n = min(5, len(x))  # number of previous results to consider
                    x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                    # 根据results计算hyp的权重
                    w = fitness(x) - fitness(x).min()  # weights
                    # 根据不同进化方式获得base hyp
                    if parent == 'single' or len(x) == 1:
                        # x = x[random.randint(0, n - 1)]  # random selection
                        x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                    elif parent == 'weighted':
                        x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination
    
                    # Mutate
                    # 超参数进化
                    mp, s = 0.9, 0.2  # mutation probability, sigma
                    npr = np.random
                    npr.seed(int(time.time()))
                    # 获取突变初始值
                    g = np.array([x[0] for x in meta.values()])  # gains 0-1
                    ng = len(meta)
                    v = np.ones(ng)
                    # 设置突变
                    while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                        v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                    # 将突变添加到base hyp上
                    # [i+7]是因为x中前七个数字为results的指标(P, R, mAP, F1, test_losses=(GIoU, obj, cls)),之后才是超参数hyp
                    for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                        hyp[k] = float(x[i + 7] * v[i])  # mutate
    
                # Constrain to limits
                # 修剪hyp在规定范围里
                for k, v in meta.items():
                    hyp[k] = max(hyp[k], v[1])  # lower limit
                    hyp[k] = min(hyp[k], v[2])  # upper limit
                    hyp[k] = round(hyp[k], 5)  # significant digits
    
                # Train mutation
                # 训练
                results = train(hyp.copy())
    
                # Write mutation results
                """
                写入results和对应的hyp到evolve.txt
                evolve.txt文件每一行为一次进化的结果
                一行中前七个数字为(P, R, mAP, F1, test_losses=(GIoU, obj, cls)),之后为hyp
                保存hyp到yaml文件
                """
                print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
    
            # Plot results
            plot_evolution(yaml_file)
            print('Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these '
                  'hyperparameters: $ python train.py --hyp %s' % (yaml_file, yaml_file))
    

    3.train函数解析

    import argparse
    import logging
    import math
    import os
    import random
    import shutil
    import time
    from pathlib import Path
    
    import numpy as np
    import torch.distributed as dist
    import torch.nn.functional as F
    import torch.optim as optim
    import torch.optim.lr_scheduler as lr_scheduler
    import torch.utils.data
    import yaml
    from torch.cuda import amp
    from torch.nn.parallel import DistributedDataParallel as DDP
    from torch.utils.tensorboard import SummaryWriter
    from tqdm import tqdm
    
    import test  # import test.py to get mAP after each epoch
    from models.yolo import Model
    from utils.datasets import create_dataloader
    from utils.general import (
        torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors, labels_to_image_weights,
        compute_loss, plot_images, fitness, strip_optimizer, plot_results, get_latest_run, check_dataset, check_file,
        check_git_status, check_img_size, increment_dir, print_mutation, plot_evolution, set_logging)
    from utils.google_utils import attempt_download
    from utils.torch_utils import init_seeds, ModelEMA, select_device, intersect_dicts
    
    logger = logging.getLogger(__name__)
    
    
    def train(hyp, opt, device, tb_writer=None):
        logger.info(f'Hyperparameters {hyp}')
        # 获取记录训练日志的路径
        """
        训练日志包括:权重、tensorboard文件、超参数hyp、设置的训练参数opt(也就是epochs,batch_size等),result.txt
        result.txt包括: 占GPU内存、训练集的GIOU loss, objectness loss, classification loss, 总loss, 
        targets的数量, 输入图片分辨率, 准确率TP/(TP+FP),召回率TP/P ; 
        测试集的mAP50, mAP@0.5:0.95, GIOU loss, objectness loss, classification loss.
        还会保存batch<3的ground truth
        """
        # 如果设置进化算法则不会传入tb_writer(则为None),设置一个evolve文件夹作为日志目录
        log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve'  # logging directory
        # 设置保存权重的路径
        wdir = log_dir / 'weights'  # weights directory
        os.makedirs(wdir, exist_ok=True)
        last = wdir / 'last.pt'
        best = wdir / 'best.pt'
        # 设置保存results的路径
        results_file = str(log_dir / 'results.txt')
        # 获取轮次、批次、总批次(涉及到分布式训练)、权重、进程序号(主要用于分布式训练)
        epochs, batch_size, total_batch_size, weights, rank = \
            opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
    
        # Save run settings
        # 保存hyp和opt
        with open(log_dir / 'hyp.yaml', 'w') as f:
            yaml.dump(hyp, f, sort_keys=False)
        with open(log_dir / 'opt.yaml', 'w') as f:
            yaml.dump(vars(opt), f, sort_keys=False)
    
        # Configure
        cuda = device.type != 'cpu'
        # 设置随机种子
        init_seeds(2 + rank)
        # 加载数据配置信息
        with open(opt.data) as f:
            data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
        # torch_distributed_zero_first同步所有进程
        # check_dataset检查数据集,如果没找到数据集则下载数据集(仅适用于项目中自带的yaml文件数据集)
        with torch_distributed_zero_first(rank):
            check_dataset(data_dict)  # check
        # 获取训练集、测试集图片路径
        train_path = data_dict['train']
        test_path = data_dict['val']
        # 获取类别数量和类别名字
        # 如果设置了opt.single_cls则为一类
        nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, names
        assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check
    
        # Model
        pretrained = weights.endswith('.pt')
        # 如果采用预训练
        if pretrained:
            # 加载模型,从google云盘中自动下载模型
            # 但通常会下载失败,建议提前下载下来放进weights目录
            with torch_distributed_zero_first(rank):
                attempt_download(weights)  # download if not found locally
            # 加载检查点
            ckpt = torch.load(weights, map_location=device)  # load checkpoint
            # if hyp['anchors']:
            #     ckpt['model'].yaml['anchors'] = round(hyp['anchors'])  # force autoanchor
            """
            这里模型创建,可通过opt.cfg,也可通过ckpt['model'].yaml
            这里的区别在于是否是resume,resume时会将opt.cfg设为空,
            则按照ckpt['model'].yaml创建模型;
            这也影响着下面是否除去anchor的key(也就是不加载anchor),
            如果resume,则加载权重中保存的anchor来继续训练;
            主要是预训练权重里面保存了默认coco数据集对应的anchor,
            如果用户自定义了anchor,再加载预训练权重进行训练,会覆盖掉用户自定义的anchor;
            所以这里主要是设定一个,如果加载预训练权重进行训练的话,就去除掉权重中的anchor,采用用户自定义的;
            如果是resume的话,就是不去除anchor,就权重和anchor一起加载, 接着训练;
            参考https://github.com/ultralytics/yolov5/issues/459
            所以下面设置了intersect_dicts,该函数就是忽略掉exclude中的键对应的值
            """
            model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)  # create
            # 如果opt.cfg存在(表示采用预训练权重进行训练)就设置去除anchor
            exclude = ['anchor'] if opt.cfg else []  # exclude keys
            state_dict = ckpt['model'].float().state_dict()  # to FP32
            state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
            model.load_state_dict(state_dict, strict=False)  # load
            # 显示加载预训练权重的的键值对和创建模型的键值对
            # 如果设置了resume,则会少加载两个键值对(anchors,anchor_grid)
            logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
        else:
            # 创建模型, ch为输入图片通道
            model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create
    
        # Freeze
        """
        冻结模型层,设置冻结层名字即可
        具体可以查看https://github.com/ultralytics/yolov5/issues/679
        但作者不鼓励冻结层,因为他的实验当中显示冻结层不能获得更好的性能,参照:https://github.com/ultralytics/yolov5/pull/707
        并且作者为了使得优化参数分组可以正常进行,在下面将所有参数的requires_grad设为了True
        其实这里只是给一个freeze的示例
        """
        freeze = ['', ]  # parameter names to freeze (full or partial)
        if any(freeze):
            for k, v in model.named_parameters():
                if any(x in k for x in freeze):
                    print('freezing %s' % k)
                    v.requires_grad = False
    
        # Optimizer
        """
        nbs为模拟的batch_size; 
        就比如默认的话上面设置的opt.batch_size为16,这个nbs就为64,
        也就是模型梯度累积了64/16=4(accumulate)次之后
        再更新一次模型,变相的扩大了batch_size
        """
        nbs = 64  # nominal batch size
        accumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing
        # 根据accumulate设置权重衰减系数
        hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
        pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
        # 将模型分成三组(weight、bn, bias, 其他所有参数)优化
        for k, v in model.named_parameters():
            v.requires_grad = True
            if '.bias' in k:
                pg2.append(v)  # biases
            elif '.weight' in k and '.bn' not in k:
                pg1.append(v)  # apply weight decay
            else:
                pg0.append(v)  # all else
    
        # 选用优化器,并设置pg0组的优化方式
        if opt.adam:
            optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
        else:
            optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
        # 设置weight、bn的优化方式
        optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
        # 设置biases的优化方式
        optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
        # 打印优化信息
        logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
        del pg0, pg1, pg2
    
        # 设置学习率衰减,这里为余弦退火方式进行衰减
        # 就是根据以下公式lf,epoch和超参数hyp['lrf']进行衰减
        # Scheduler https://arxiv.org/pdf/1812.01187.pdf
        # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
        lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf']  # cosine
        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
        # plot_lr_scheduler(optimizer, scheduler, epochs)
    
        # Resume
        # 初始化开始训练的epoch和最好的结果
        # best_fitness是以[0.0, 0.0, 0.1, 0.9]为系数并乘以[精确度, 召回率, mAP@0.5, mAP@0.5:0.95]再求和所得
        # 根据best_fitness来保存best.pt
        start_epoch, best_fitness = 0, 0.0
        if pretrained:
            # Optimizer
            # 加载优化器与best_fitness
            if ckpt['optimizer'] is not None:
                optimizer.load_state_dict(ckpt['optimizer'])
                best_fitness = ckpt['best_fitness']
    
            # Results
            # 加载训练结果result.txt
            if ckpt.get('training_results') is not None:
                with open(results_file, 'w') as file:
                    file.write(ckpt['training_results'])  # write results.txt
    
            # Epochs
            # 加载训练的轮次
            start_epoch = ckpt['epoch'] + 1
            """
            如果resume,则备份权重
            尽管目前resume能够近似100%成功的起作用了,参照:https://github.com/ultralytics/yolov5/pull/756
            但为了防止resume时出现其他问题,把之前的权重覆盖了,所以这里进行备份,参照:https://github.com/ultralytics/yolov5/pull/765
            """
            if opt.resume:
                assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
                shutil.copytree(wdir, wdir.parent / f'weights_backup_epoch{start_epoch - 1}')  # save previous weights
            """
            如果新设置epochs小于加载的epoch,
            则视新设置的epochs为需要再训练的轮次数而不再是总的轮次数
            """
            if epochs < start_epoch:
                logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                            (weights, ckpt['epoch'], epochs))
                epochs += ckpt['epoch']  # finetune additional epochs
    
            del ckpt, state_dict
    
        # Image sizes
        # 获取模型总步长和模型输入图片分辨率
        gs = int(max(model.stride))  # grid size (max stride)
        # 检查输入图片分辨率确保能够整除总步长gs
        imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples
    
        # DP mode
        # 分布式训练,参照:https://github.com/ultralytics/yolov5/issues/475
        # DataParallel模式,仅支持单机多卡
        # rank为进程编号, 这里应该设置为rank=-1则使用DataParallel模式
        # rank=-1且gpu数量=1时,不会进行分布式
        if cuda and rank == -1 and torch.cuda.device_count() > 1:
            model = torch.nn.DataParallel(model)
    
        # SyncBatchNorm
        # 使用跨卡同步BN
        if opt.sync_bn and cuda and rank != -1:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
            logger.info('Using SyncBatchNorm()')
    
        # Exponential moving average
        # 为模型创建EMA指数滑动平均,如果GPU进程数大于1,则不创建
        ema = ModelEMA(model) if rank in [-1, 0] else None
    
        # DDP mode
        # 如果rank不等于-1,则使用DistributedDataParallel模式
        # local_rank为gpu编号,rank为进程,例如rank=3,local_rank=0 表示第 3 个进程内的第 1 块 GPU。
        if cuda and rank != -1:
            model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank))
    
        # Trainloader
        # 创建训练集dataloader
        dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                                hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
                                                world_size=opt.world_size, workers=opt.workers)
        """
        获取标签中最大的类别值,并于类别数作比较
        如果大于类别数则表示有问题
        """
        mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
        nb = len(dataloader)  # number of batches
        assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
    
        # Testloader
        if rank in [-1, 0]:
            # 更新ema模型的updates参数,保持ema的平滑性
            ema.updates = start_epoch * nb // accumulate  # set EMA updates
            # 创建测试集dataloader
            testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt,
                                           hyp=hyp, augment=False, cache=opt.cache_images, rect=True, rank=-1,
                                           world_size=opt.world_size, workers=opt.workers)[0]  # only runs on process 0
    
        # Model parameters
        # 根据自己数据集的类别数设置分类损失的系数
        hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
        # 设置类别数,超参数
        model.nc = nc  # attach number of classes to model
        model.hyp = hyp  # attach hyperparameters to model
        """
        设置giou的值在objectness loss中做标签的系数, 使用代码如下
        tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype)
        这里model.gr=1,也就是说完全使用标签框与预测框的giou值来作为该预测框的objectness标签
        """
        model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
        # 根据labels初始化图片采样权重
        model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights
        # 获取类别的名字
        model.names = names
    
        # Class frequency
        if rank in [-1, 0]:
            # 将所有样本的标签拼接到一起shape为(total, 5),统计后做可视化
            labels = np.concatenate(dataset.labels, 0)
            # 获得所有样本的类别
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.
            # model._initialize_biases(cf.to(device))
            # 根据上面的统计对所有样本的类别,中心点xy位置,长宽wh做可视化
            plot_labels(labels, save_dir=log_dir)
            if tb_writer:
                # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
                tb_writer.add_histogram('classes', c, 0)
    
            # Check anchors
            """
            计算默认锚点anchor与数据集标签框的长宽比值
            标签的长h宽w与anchor的长h_a宽w_a的比值, 即h/h_a, w/w_a都要在(1/hyp['anchor_t'], hyp['anchor_t'])是可以接受的
            如果标签框满足上面条件的数量小于总数的99%,则根据k-mean算法聚类新的锚点anchor
            """
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
    
        # Start training
        t0 = time.time()
        # 获取热身训练的迭代次数
        nw = max(3 * nb, 1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
        # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
        # 初始化mAP和results
        maps = np.zeros(nc)  # mAP per class
        results = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
        """
        设置学习率衰减所进行到的轮次,
        目的是打断训练后,--resume接着训练也能正常的衔接之前的训练进行学习率衰减
        """
        scheduler.last_epoch = start_epoch - 1  # do not move
        # 通过torch1.6自带的api设置混合精度训练
        scaler = amp.GradScaler(enabled=cuda)
        """
        打印训练和测试输入图片分辨率
        加载图片时调用的cpu进程数
        从哪个epoch开始训练
        """
        logger.info('Image sizes %g train, %g test' % (imgsz, imgsz_test))
        logger.info('Using %g dataloader workers' % dataloader.num_workers)
        logger.info('Starting training for %g epochs...' % epochs)
        # torch.autograd.set_detect_anomaly(True)
        # 训练
        for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
            model.train()
    
            # Update image weights (optional)
    
            if dataset.image_weights:
                # Generate indices
                """
               如果设置进行图片采样策略,
               则根据前面初始化的图片采样权重model.class_weights以及maps配合每张图片包含的类别数
               通过random.choices生成图片索引indices从而进行采样
               """
                if rank in [-1, 0]:
                    w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
                    image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
                    dataset.indices = random.choices(range(dataset.n), weights=image_weights,
                                                     k=dataset.n)  # rand weighted idx
                # Broadcast if DDP
                # 如果是DDP模式,则广播采样策略
                if rank != -1:
                    indices = torch.zeros([dataset.n], dtype=torch.int)
                    if rank == 0:
                        indices[:] = torch.tensor(dataset.indices, dtype=torch.int)
                    # 广播索引到其他group
                    dist.broadcast(indices, 0)
                    if rank != 0:
                        dataset.indices = indices.cpu().numpy()
    
            # Update mosaic border
            # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
            # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders
    
            # 初始化训练时打印的平均损失信息
            mloss = torch.zeros(4, device=device)  # mean losses
            if rank != -1:
                # DDP模式下打乱数据, ddp.sampler的随机采样数据是基于epoch+seed作为随机种子,
                # 每次epoch不同,随机种子就不同
                dataloader.sampler.set_epoch(epoch)
            pbar = enumerate(dataloader)
            logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
            if rank in [-1, 0]:
                # tqdm 创建进度条,方便训练时 信息的展示
                pbar = tqdm(pbar, total=nb)  # progress bar
            optimizer.zero_grad()
            for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
                # 计算迭代的次数iteration
                ni = i + nb * epoch  # number integrated batches (since train start)
                imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0
    
                # Warmup
                """
                热身训练(前nw次迭代)
                在前nw次迭代中,根据以下方式选取accumulate和学习率
                """
                if ni <= nw:
                    xi = [0, nw]  # x interp
                    # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                    accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                    for j, x in enumerate(optimizer.param_groups):
                        # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                        """
                        bias的学习率从0.1下降到基准学习率lr*lf(epoch),
                        其他的参数学习率从0增加到lr*lf(epoch).
                        lf为上面设置的余弦退火的衰减函数
                        """
                        x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                        # 动量momentum也从0.9慢慢变到hyp['momentum'](default=0.937)
                        if 'momentum' in x:
                            x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])
    
                # Multi-scale
                # 设置多尺度训练,从imgsz * 0.5, imgsz * 1.5 + gs随机选取尺寸
                if opt.multi_scale:
                    sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                    sf = sz / max(imgs.shape[2:])  # scale factor
                    if sf != 1:
                        ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                        imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
    
                # Forward
                # 混合精度
                with amp.autocast(enabled=cuda):
                    # 前向传播
                    pred = model(imgs)  # forward
                    # Loss
                    # 计算损失,包括分类损失,objectness损失,框的回归损失
                    # loss为总损失值,loss_items为一个元组,包含分类损失,objectness损失,框的回归损失和总损失
                    loss, loss_items = compute_loss(pred, targets.to(device), model)  # loss scaled by batch_size
                    if rank != -1:
                        # 平均不同gpu之间的梯度
                        loss *= opt.world_size  # gradient averaged between devices in DDP mode
    
                # Backward
                # 反向传播
                scaler.scale(loss).backward()
    
                # Optimize
                # 模型反向传播accumulate次之后再根据累积的梯度更新一次参数
                if ni % accumulate == 0:
                    scaler.step(optimizer)  # optimizer.step
                    scaler.update()
                    optimizer.zero_grad()
                    if ema:
                        ema.update(model)
    
                # Print
                if rank in [-1, 0]:
                    # 打印显存,进行的轮次,损失,target的数量和图片的size等信息
                    mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                    mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                    s = ('%10s' * 2 + '%10.4g' * 6) % (
                        '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
                    # 进度条显示以上信息
                    pbar.set_description(s)
    
                    # Plot
                    # 将前三次迭代batch的标签框在图片上画出来并保存
                    if ni < 3:
                        f = str(log_dir / ('train_batch%g.jpg' % ni))  # filename
                        result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                        if tb_writer and result is not None:
                            tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                            # tb_writer.add_graph(model, imgs)  # add model to tensorboard
    
                # end batch ------------------------------------------------------------------------------------------------
    
            # Scheduler
            # 进行学习率衰减
            lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
            scheduler.step()
    
            # DDP process 0 or single-GPU
            if rank in [-1, 0]:
                # mAP
                if ema:
                    # 更新EMA的属性
                    # 添加include的属性
                    ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
                # 判断该epoch是否为最后一轮
                final_epoch = epoch + 1 == epochs
                # 对测试集进行测试,计算mAP等指标
                # 测试时使用的是EMA模型
                if not opt.notest or final_epoch:  # Calculate mAP
                    results, maps, times = test.test(opt.data,
                                                     batch_size=total_batch_size,
                                                     imgsz=imgsz_test,
                                                     model=ema.ema,
                                                     single_cls=opt.single_cls,
                                                     dataloader=testloader,
                                                     save_dir=log_dir)
    
                # Write
                # 将指标写入result.txt
                with open(results_file, 'a') as f:
                    f.write(s + '%10.4g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
                # 如果设置opt.bucket, 上传results.txt到谷歌云盘
                if len(opt.name) and opt.bucket:
                    os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
    
                # Tensorboard
                # 添加指标,损失等信息到tensorboard显示
                if tb_writer:
                    tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',  # train loss
                            'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                            'val/giou_loss', 'val/obj_loss', 'val/cls_loss',  # val loss
                            'x/lr0', 'x/lr1', 'x/lr2']  # params
                    for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                        tb_writer.add_scalar(tag, x, epoch)
    
                # Update best mAP
                # 更新best_fitness
                fi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
                if fi > best_fitness:
                    best_fitness = fi
    
                # Save model
                """
                保存模型,还保存了epoch,results,optimizer等信息,
                optimizer将不会在最后一轮完成后保存
                model保存的是EMA的模型
                """
                save = (not opt.nosave) or (final_epoch and not opt.evolve)
                if save:
                    with open(results_file, 'r') as f:  # create checkpoint
                        ckpt = {'epoch': epoch,
                                'best_fitness': best_fitness,
                                'training_results': f.read(),
                                'model': ema.ema,
                                'optimizer': None if final_epoch else optimizer.state_dict()}
    
                    # Save last, best and delete
                    torch.save(ckpt, last)
                    if best_fitness == fi:
                        torch.save(ckpt, best)
                    del ckpt
            # end epoch ----------------------------------------------------------------------------------------------------
        # end training
    
        if rank in [-1, 0]:
            # Strip optimizers
            """
            模型训练完后,strip_optimizer函数将optimizer从ckpt中去除;
            并且对模型进行model.half(), 将Float32的模型->Float16,
            可以减少模型大小,提高inference速度
            """
            n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
            fresults, flast, fbest = 'results%s.txt' % n, wdir / f'last{n}.pt', wdir / f'best{n}.pt'
            for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', 'results.txt'], [flast, fbest, fresults]):
                if os.path.exists(f1):
                    os.rename(f1, f2)  # rename
                    if str(f2).endswith('.pt'):  # is *.pt
                        strip_optimizer(f2)  # strip optimizer
                        # 上传结果到谷歌云盘
                        os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None  # upload
            # Finish
            # 可视化results.txt文件
            if not opt.evolve:
                plot_results(save_dir=log_dir)  # save as results.png
            logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        # 释放显存
        dist.destroy_process_group() if rank not in [-1, 0] else None
        torch.cuda.empty_cache()
        return results
    

                [旧版本]

    1.训练参数以及main函数解析

    训练的时候可以设置进行超参数进化算法(默认不使用)。

    值得一提的是,由于现在yolov5还在开发当中,训练文件的–resume还不是100%的完善,不建议打断训练再resume。具体可以参照issue292

    if __name__ == '__main__':
        # 因为yolov5还在开发当中,check_git_status()检查你的代码版本是否为最新的(不适用于windows系统)
        check_git_status()
        """
        opt参数解析:
        cfg:模型配置文件,网络结构
        data:数据集配置文件,数据集路径,类名等
        hyp:超参数文件
        epochs:训练总轮次
        batch-size:批次大小
        img-size:输入图片分辨率大小
        rect:是否采用矩形训练,默认False
        resume:接着打断训练上次的结果接着训练
        nosave:不保存模型,默认False
        notest:不进行test,默认False
        noautoanchor:不自动调整anchor,默认False
        evolve:是否进行超参数进化,默认False
        bucket:谷歌云盘bucket,一般不会用到
        cache-images:是否提前缓存图片到内存,以加快训练速度,默认False
        weights:加载的权重文件
        name:数据集名字,如果设置:results.txt to results_name.txt,默认无
        device:训练的设备,cpu;0(表示一个gpu设备cuda:0);0,1,2,3(多个gpu设备)
        multi-scale:是否进行多尺度训练,默认False
        single-cls:数据集是否只有一个类别,默认False
        """
        parser = argparse.ArgumentParser()
        parser.add_argument('--cfg', type=str, default='models/yolov5x_landslide.yaml', help='model.yaml path')
        parser.add_argument('--data', type=str, default='data/landslide.yaml', help='data.yaml path')
        parser.add_argument('--hyp', type=str, default='', help='hyp.yaml path (optional)')
        parser.add_argument('--epochs', type=int, default=300)
        parser.add_argument('--batch-size', type=int, default=8)
        parser.add_argument('--img-size', nargs='+', type=int, default=[416, 416], help='train,test sizes')
        parser.add_argument('--rect', action='store_true', help='rectangular training')
        parser.add_argument('--resume', nargs='?', const='get_last', default='runs/exp0/weights/last.pt',
                            help='resume from given path/to/last.pt, or most recent run if blank.')
        parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
        parser.add_argument('--notest', action='store_true', help='only test final epoch')
        parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
        parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
        parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
        parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
        parser.add_argument('--weights', type=str, default='', help='initial weights path')
        parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
        parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
        parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
        parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
        opt = parser.parse_args()
        """
        resume时获取last.pt的路径
        get_latest_run()函数获取runs文件夹中最近的last.pt
        注意:进行resume时,不要设置opt.weights(除非设置opt.weights='last.pt'),否则会重新开始训练
        """
        last = get_latest_run() if opt.resume == 'get_last' else opt.resume  # resume from most recent run
        if last and not opt.weights:
            print(f'Resuming training from {last}')
        opt.weights = last if opt.resume and not opt.weights else opt.weights
        # check_file检查文件是否存在
        opt.cfg = check_file(opt.cfg)  # check file
        opt.data = check_file(opt.data)  # check file
        opt.hyp = check_file(opt.hyp) if opt.hyp else ''  # check file
        print(opt)
        # 扩展image_size为[image_size, image_size]一个是训练size,一个是测试size
        opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
        # 选择设备
        device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
        if device.type == 'cpu':
            mixed_precision = False
    
        # Train
        # 如果不进行超参数进化,则直接调用train()函数,开始训练
        if not opt.evolve:
            print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
            # 创建tensorboard
            tb_writer = SummaryWriter(log_dir=increment_dir('runs' + os.sep + 'exp', opt.name))
            # 如果设置了超参数文件路径,则加载新的超参数文件
            if opt.hyp:  # update hyps
                with open(opt.hyp) as f:
                    hyp.update(yaml.load(f, Loader=yaml.FullLoader))
    
            train(hyp)
    
        # Evolve hyperparameters (optional)
        # 根据训练结果进行超参数的进化
        else:
            tb_writer = None
            # 设置不测试不保存模型
            opt.notest, opt.nosave = True, True  # only test/save final epoch
            if opt.bucket:
                os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists
    
            # 默认进化十次
            """
            这里的进化算法是:根据之前训练时的hyp来确定一个base hyp再进行突变;
            如何根据?通过之前每次进化得到的results来确定之前每个hyp的权重
            有了每个hyp和每个hyp的权重之后有两种进化方式;
            1.根据每个hyp的权重随机选择一个之前的hyp作为base hyp,random.choices(range(n), weights=w)
            2.根据每个hyp的权重对之前所有的hyp进行融合获得一个base hyp,(x * w.reshape(n, 1)).sum(0) / w.sum()
            evolve.txt会记录每次进化之后的results+hyp
            每次进化时,hyp会根据之前的results进行从大到小的排序;
            再根据fitness函数计算之前每次进化得到的hyp的权重
            再确定哪一种进化方式,从而进行进化
            """
            for _ in range(10):  # generations to evolve
                if os.path.exists('evolve.txt'):  # if evolve.txt exists: select best hyps and mutate
                    # Select parent(s)
                    # 选择进化方式
                    parent = 'single'  # parent selection method: 'single' or 'weighted'
                    # 加载evolve.txt
                    x = np.loadtxt('evolve.txt', ndmin=2)
                    # 选取至多前5次进化的结果
                    n = min(5, len(x))  # number of previous results to consider
                    x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                    # 根据results计算hyp的权重
                    w = fitness(x) - fitness(x).min()  # weights
                    # 根据不同进化方式获得base hyp
                    if parent == 'single' or len(x) == 1:
                        # x = x[random.randint(0, n - 1)]  # random selection
                        x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                    elif parent == 'weighted':
                        x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination
    
                    # Mutate
                    # 超参数进化
                    mp, s = 0.9, 0.2  # mutation probability, sigma
                    npr = np.random
                    npr.seed(int(time.time()))
                    g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1])  # gains
                    ng = len(g)
                    v = np.ones(ng)
                    # 设置突变
                    while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                        v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                    # 将突变添加到base hyp上
                    # [i+7]是因为x中前七个数字为results的指标(P, R, mAP, F1, test_losses=(GIoU, obj, cls)),之后才是超参数hyp
                    for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                        hyp[k] = x[i + 7] * v[i]  # mutate
    
                # Clip to limits
                # 修剪hyp在规定范围里
                keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
                limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
                for k, v in zip(keys, limits):
                    hyp[k] = np.clip(hyp[k], v[0], v[1])
    
                # Train mutation
                # 训练
                results = train(hyp.copy())
    
                # Write mutation results
                """
                写入results和对应的hyp到evolve.txt
                evolve.txt文件每一行为一次进化的结果
                一行中前七个数字为(P, R, mAP, F1, test_losses=(GIoU, obj, cls)),之后为hyp
                """
                print_mutation(hyp, results, opt.bucket)
    
                # Plot results
                # plot_evolution_results(hyp)
    

    2.train函数解析

    import argparse
    
    import torch.distributed as dist
    import torch.nn.functional as F
    import torch.optim as optim
    import torch.optim.lr_scheduler as lr_scheduler
    import torch.utils.data
    from torch.utils.tensorboard import SummaryWriter
    
    import test  # import test.py to get mAP after each epoch
    from models.yolo import Model
    from utils import google_utils
    from utils.datasets import *
    from utils.utils import *
    
    #  设置混精度训练,需要安装英伟达的apex,默认为True,笔者没用到就设置为False
    mixed_precision = False
    try:  # Mixed precision training https://github.com/NVIDIA/apex
        from apex import amp
    except:
        print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
        mixed_precision = False  # not installed
    
    # 超参数
    hyp = {'optimizer': 'SGD',  # 优化器['adam', 'SGD', None] if none, default is SGD
           'lr0': 0.01,  # 学习率initial learning rate (SGD=1E-2, Adam=1E-3)
           'momentum': 0.937,  # 学习率动量SGD momentum/Adam beta1
           'weight_decay': 5e-4,  # 权重衰减系数optimizer weight decay
           'giou': 0.05,  # giou损失的系数giou loss gain
           'cls': 0.58,  # 分类损失的系数cls loss gain
           'cls_pw': 1.0,  # 分类BCELoss中正样本的权重cls BCELoss positive_weight
           'obj': 1.0,  # 有无物体损失的系数obj loss gain (*=img_size/320 if img_size != 320)
           'obj_pw': 1.0,  # 有无物体BCELoss中正样本的权重obj BCELoss positive_weight
           'iou_t': 0.20,  # 标签与anchors的iou阈值iou training threshold
           'anchor_t': 4.0,  # 标签的长h宽w/anchor的长h_a宽w_a阈值, 即h/h_a, w/w_a都要在(1/4, 4)之间anchor-multiple threshold
           'fl_gamma': 0.0,  # focal loss gamma, 设为0则表示不使用focal loss(efficientDet default is gamma=1.5)
           # 下面是一些数据增强的系数, 包括颜色空间和图片空间
           'hsv_h': 0.014,  # image HSV-Hue augmentation (fraction)
           'hsv_s': 0.68,  # image HSV-Saturation augmentation (fraction)
           'hsv_v': 0.36,  # image HSV-Value augmentation (fraction)
           'degrees': 0.0,  # image rotation (+/- deg)
           'translate': 0.0,  # image translation (+/- fraction)
           'scale': 0.5,  # image scale (+/- gain)
           'shear': 0.0}  # image shear (+/- deg)
    
    
    def train(hyp):
        print(f'Hyperparameters {hyp}')
        # 获取记录训练日志的路径
        """
        训练日志包括:权重、tensorboard文件、超参数hyp、设置的训练参数opt(也就是epochs,batch_size等),result.txt
        result.txt包括: 占GPU内存、训练集的GIOU loss, objectness loss, classification loss, 总loss, 
        targets的数量, 输入图片分辨率, 准确率TP/(TP+FP),召回率TP/P ; 
        测试集的mAP50, mAP@0.5:0.95, GIOU loss, objectness loss, classification loss.
        还会保存batch<3的ground truth
        """
        log_dir = tb_writer.log_dir  # run directory
        # 设置保存权重的路径
        wdir = str(Path(log_dir) / 'weights') + os.sep  # weights directory
    
        os.makedirs(wdir, exist_ok=True)
        last = wdir + 'last.pt'
        best = wdir + 'best.pt'
        # 设置保存results的路径
        results_file = log_dir + os.sep + 'results.txt'
    
        # Save run settings
        # 保存hyp和opt
        with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
            yaml.dump(hyp, f, sort_keys=False)
        with open(Path(log_dir) / 'opt.yaml', 'w') as f:
            yaml.dump(vars(opt), f, sort_keys=False)
    
        # 设置轮次、批次、权重
        epochs = opt.epochs  # 300
        batch_size = opt.batch_size  # 64
        weights = opt.weights  # initial training weights
    
        # Configure
        # 设置随机种子
        init_seeds(1)
        # 加载数据配置信息
        with open(opt.data) as f:
            data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
        # 获取训练集、测试集图片路径
        train_path = data_dict['train']
        test_path = data_dict['val']
        # 获取类别数量和类别名字
        # 如果设置了opt.single_cls则为一类
        nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, names
        assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check
    
        # Remove previous results
        # 移除之前的图片结果
        for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
            os.remove(f)
    
        # Create model
        # 创建模型
        model = Model(opt.cfg, nc=nc).to(device)
    
        # Image sizes
        # 获取模型总步长和模型输入图片分辨率
        gs = int(max(model.stride))  # grid size (max stride)
        # 检查输入图片分辨率确保能够整除总步长gs
        imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples
    
        # Optimizer
        """
        nbs为模拟的batch_size; 
        就比如默认的话上面设置的opt.batch_size为16,这个nbs就为64,
        也就是模型梯度累积了64/16=4(accumulate)次之后
        再更新一次模型,变相的扩大了batch_size
        """
        nbs = 32  # nominal batch size
        accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
        # 根据accumulate设置权重衰减系数
        hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
        pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
        # 将模型分成三组(weight、bn, bias, 其他所有参数)优化
        for k, v in model.named_parameters():
            if v.requires_grad:
                if '.bias' in k:
                    pg2.append(v)  # biases
                elif '.weight' in k and '.bn' not in k:
                    pg1.append(v)  # apply weight decay
                else:
                    pg0.append(v)  # all else
    
        # 选用优化器,并设置pg0组的优化方式
        if hyp['optimizer'] == 'adam':  # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
            optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
        else:
            optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
        # 设置weight、bn的优化方式
        optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
        # 设置biases的优化方式
        optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
        print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
        del pg0, pg1, pg2
    
        # 设置学习率衰减,这里为余弦退火方式进行衰减
        # 就是根据以下公式lf与epoch进行衰减
        # Scheduler https://arxiv.org/pdf/1812.01187.pdf
        lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1  # cosine
        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
        # plot_lr_scheduler(optimizer, scheduler, epochs, save_dir=log_dir)
    
        # Load Model
        # 加载模型,从google云盘中自动下载模型
        # 但通常会下载失败,建议提前下载下来放进weights目录
        google_utils.attempt_download(weights)
        # 初始化开始训练的epoch和最好的结果
        # best_fitness是以[0.0, 0.0, 0.1, 0.9]为系数并乘以[精确度, 召回率, mAP@0.5, mAP@0.5:0.95]再求和所得
        # 根据best_fitness来保存best.pt
        start_epoch, best_fitness = 0, 0.0
        if weights.endswith('.pt'):  # pytorch format
            # 加载检查点
            ckpt = torch.load(weights, map_location=device)  # load checkpoint
    
            # load model
            # 加载模型
            try:
                ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
                                 if model.state_dict()[k].shape == v.shape}  # to FP32, filter
                model.load_state_dict(ckpt['model'], strict=False)
            except KeyError as e:
                s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
                    "Please delete or update %s and try again, or use --weights '' to train from scratch." \
                    % (opt.weights, opt.cfg, opt.weights, opt.weights)
                raise KeyError(s) from e
    
            # load optimizer
            # 加载优化器与best_fitness
            if ckpt['optimizer'] is not None:
                optimizer.load_state_dict(ckpt['optimizer'])
                best_fitness = ckpt['best_fitness']
    
            # load results
            # 加载训练结果result.txt
            if ckpt.get('training_results') is not None:
                with open(results_file, 'w') as file:
                    file.write(ckpt['training_results'])  # write results.txt
    
            # epochs
            # 加载训练的轮次
            start_epoch = ckpt['epoch'] + 1
            """
            如果新设置epochs小于加载的epoch,
            则视新设置的epochs为需要再训练的轮次数而不再是总的轮次数
            """
            if epochs < start_epoch:
                print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                      (opt.weights, ckpt['epoch'], epochs))
                epochs += ckpt['epoch']  # finetune additional epochs
    
            del ckpt
    
        # Mixed precision training https://github.com/NVIDIA/apex
        # 如果设置混精度训练,初始化混精度训练
        if mixed_precision:
            model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
    
        # Distributed training
        # 如果不在cpu上计算且gpu数量大于1且pytorch允许分布式,则设置分布式训练
        if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
            dist.init_process_group(backend='nccl',  # distributed backend
                                    init_method='tcp://127.0.0.1:9999',  # init method
                                    world_size=1,  # number of nodes
                                    rank=0)  # node rank
            model = torch.nn.parallel.DistributedDataParallel(model)
            # pip install torch==1.4.0+cu100 torchvision==0.5.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html
    
        # Trainloader
        # 创建训练集dataloader
        dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                                hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect)
    
        """
        获取标签中最大的类别值,并于类别数作比较
        如果大于类别数则表示有问题
        """
        mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
        nb = len(dataloader)  # number of batches
        assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)
    
        # Testloader
        # 创建测试集dataloader
        testloader = create_dataloader(test_path, imgsz_test, batch_size, gs, opt,
                                       hyp=hyp, augment=False, cache=opt.cache_images, rect=True)[0]
    
        # Model parameters
        # 根据自己数据集的类别数设置分类损失的系数
        hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
        # 设置类别数,超参数
        model.nc = nc  # attach number of classes to model
        model.hyp = hyp  # attach hyperparameters to model
        """
        设置giou的值在objectness loss中做标签的系数, 使用代码如下
        tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype)
        这里model.gr=1,也就是说完全使用标签框与预测框的giou值来作为该预测框的objectness标签
        """
        model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
        # 根据labels初始化图片采样权重
        model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights
        # 获取类别的名字
        model.names = names
    
        # Class frequency
        # 将所有样本的标签拼接到一起shape为(total, 5),统计后做可视化
        labels = np.concatenate(dataset.labels, 0)
        # 获得所有样本的类别
        c = torch.tensor(labels[:, 0])  # classes
        # cf = torch.bincount(c.long(), minlength=nc) + 1.
        # model._initialize_biases(cf.to(device))
        # 根据上面的统计对所有样本的类别,中心点xy位置,长宽wh做可视化
        plot_labels(labels, save_dir=log_dir)
        # 添加类别的直方图到tensorboard中
        if tb_writer:
            tb_writer.add_histogram('classes', c, 0)
    
        # Check anchors
        """
        计算默认锚点anchor与数据集标签框的长宽比值
        标签的长h宽w与anchor的长h_a宽w_a的比值, 即h/h_a, w/w_a都要在(1/hyp['anchor_t'], hyp['anchor_t'])是可以接受的
        如果标签框满足上面条件的数量小于总数的99%,则根据k-mean算法聚类新的锚点anchor
        """
        if not opt.noautoanchor:
            check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
    
        # Exponential moving average
        # 为模型创建EMA指数滑动平均
        ema = torch_utils.ModelEMA(model, updates=start_epoch * nb / accumulate)
        print(ema.updates)
    
        # Start training
        t0 = time.time()
        # 获取热身训练的迭代次数
        nw = max(3 * nb, 1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
        # 初始化mAP和results
        maps = np.zeros(nc)  # mAP per class
        results = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
        """
        设置学习率衰减所进行到的轮次,
        目的是打断训练后,--resume接着训练也能正常的衔接之前的训练进行学习率衰减
        """
        scheduler.last_epoch = start_epoch - 1  # do not move
        """
        打印训练和测试输入图片分辨率
        加载图片时调用的cpu进程数
        从哪个epoch开始训练
        """
        print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
        print('Using %g dataloader workers' % dataloader.num_workers)
        print('Starting training for %g epochs...' % epochs)
        # torch.autograd.set_detect_anomaly(True)
        # 训练
        for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
            # if epoch == 250:
            #     exit()
            model.train()
    
            # Update image weights (optional)
            """
            如果设置进行图片采样策略,
            则根据前面初始化的图片采样权重model.class_weights以及maps配合每张图片包含的类别数
            通过random.choices生成图片索引indices从而进行采样
            """
            if dataset.image_weights:
                w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
                image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
                dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n)  # rand weighted idx
    
            # Update mosaic border
            # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
            # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders
    
            # 初始化训练时打印的平均损失信息
            mloss = torch.zeros(4, device=device)  # mean losses
            print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
            # tqdm 创建进度条,方便训练时 信息的展示
            pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
            for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
                # 计算迭代的次数iteration
                ni = i + nb * epoch  # number integrated batches (since train start)
                imgs = imgs.to(device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
    
                # Warmup
                """
                热身训练(前nw次迭代)
                在前nw次迭代中,根据以下方式选取accumulate和学习率
                """
                if ni <= nw:
                    xi = [0, nw]  # x interp
                    # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                    accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                    for j, x in enumerate(optimizer.param_groups):
                        # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                        """
                        bias的学习率从0.1下降到基准学习率lr*lf(epoch),
                        其他的参数学习率从0增加到lr*lf(epoch).
                        lf为上面设置的余弦退火的衰减函数
                        """
                        x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                        # 动量momentum也从0.9慢慢变到hyp['momentum'](default=0.937)
                        if 'momentum' in x:
                            x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])
    
                # Multi-scale
                # 设置多尺度训练,从imgsz * 0.5, imgsz * 1.5 + gs随机选取尺寸
                if opt.multi_scale:
                    sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                    sf = sz / max(imgs.shape[2:])  # scale factor
                    if sf != 1:
                        ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                        imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
    
                # Forward
                pred = model(imgs)
    
                # Loss
                # 计算损失,包括分类损失,objectness损失,框的回归损失
                # loss为总损失值,loss_items为一个元组,包含分类损失,objectness损失,框的回归损失和总损失
                loss, loss_items = compute_loss(pred, targets.to(device), model)
                # 检查loss是否无穷大(可能时梯度爆炸,或者计算损失梯度时存在log(score)->log(0)->无穷大)
                if not torch.isfinite(loss):
                    print('WARNING: non-finite loss, ending training ', loss_items)
                    return results
    
                # Backward
                # 如果设置混精度训练,混合精度反向传播
                if mixed_precision:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()
    
                # Optimize
                # 模型反向传播accumulate次之后再根据累积的梯度更新一次参数
                if ni % accumulate == 0:
                    optimizer.step()
                    optimizer.zero_grad()
                    ema.update(model)
    
                # Print
                # 打印显存,进行的轮次,损失,target的数量和图片的size等信息
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.4g' * 6) % (
                    '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
                # 进度条显示以上信息
                pbar.set_description(s)
    
                # Plot
                # 将前三次迭代batch的标签框在图片上画出来并保存
                if ni < 3:
                    f = str(Path(log_dir) / ('train_batch%g.jpg' % ni))  # filename
                    result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                    if tb_writer and result is not None:
                        tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                        # tb_writer.add_graph(model, imgs)  # add model to tensorboard
    
                # end batch ------------------------------------------------------------------------------------------------
    
            # Scheduler
            # 进行学习率衰减
            scheduler.step()
    
            # mAP
            # 更新EMA的属性
            ema.update_attr(model)
            # 判断该epoch是否为最后一轮
            final_epoch = epoch + 1 == epochs
            # 对测试集进行测试,计算mAP等指标
            # 测试时使用的是EMA模型
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(opt.data,
                                                 batch_size=batch_size,
                                                 imgsz=imgsz_test,
                                                 save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
                                                 model=ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=log_dir)
    
            # Write
            # 将指标写入result.txt
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
            # 如果设置opt.bucket, 上传results.txt到谷歌云盘
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))
    
            # Tensorboard
            # 添加指标,损失等信息到tensorboard显示
            if tb_writer:
                tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                        'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
                        'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
                for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                    tb_writer.add_scalar(tag, x, epoch)
    
            # Update best mAP
            # 更新best_fitness
            fi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
            if fi > best_fitness:
                best_fitness = fi
    
            # Save model
            """
            保存模型,还保存了epoch,results,optimizer等信息,
            optimizer将不会在最后一轮完成后保存
            model保存的是EMA的模型
            """
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {'epoch': epoch,
                            'best_fitness': best_fitness,
                            'training_results': f.read(),
                            'model': ema.ema,
                            'optimizer': None if final_epoch else optimizer.state_dict()}
    
                # Save last, best and delete
                torch.save(ckpt, last)
                if (best_fitness == fi) and not final_epoch:
                    torch.save(ckpt, best)
                del ckpt
    
            # end epoch ----------------------------------------------------------------------------------------------------
        # end training
    
        # Strip optimizers
        """
        模型训练完后,strip_optimizer函数将optimizer从ckpt中去除;
        并且对模型进行model.half(), 将Float32的模型->Float16,
        可以减少模型大小,提高inference速度
        """
        n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
        fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
        for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                ispt = f2.endswith('.pt')  # is *.pt
                strip_optimizer(f2) if ispt else None  # strip optimizer
                # 上传结果到谷歌云盘
                os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None  # upload
    
        # Finish
        # 可视化results.txt文件
        if not opt.evolve:
            plot_results(save_dir=log_dir)  # save as results.png
        print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        # 释放显存
        dist.destroy_process_group() if device.type != 'cpu' and torch.cuda.device_count() > 1 else None
        torch.cuda.empty_cache()
        return results
    

    以上我根据ultralytics\yolov5的train.py代码对其整体流程做一个梳理,讲解每个部分的代码的作用,但是对于一些细节函数还没做详细解析,就比如说计算损失的compute_loss()函数等,这些函数在utils.py文件里,之后更新解析utils.py。

    相关文章

      网友评论

        本文标题:[图像算法]-(yolov5.train)-YOLOV5训练代码

        本文链接:https://www.haomeiwen.com/subject/xjyokltx.html