美文网首页
pyspark 元素级乘法ElementwiseProduct

pyspark 元素级乘法ElementwiseProduct

作者: 米斯特芳 | 来源:发表于2021-08-08 11:47 被阅读0次

from pyspark.ml.feature import ElementwiseProduct
from pyspark.ml.linalg import Vectors
from pyspark.sql import SparkSession

if __name__ == "__main__":
    spark = SparkSession\
        .builder\
        .appName("ElementwiseProductExample")\
        .getOrCreate()

    # Create some vector data; also works for sparse vectors
    data = [(Vectors.dense([1.0, 2.0, 3.0]),), (Vectors.dense([4.0, 5.0, 6.0]),)]
    df = spark.createDataFrame(data, ["vector"])
    # scalingVec:看做一个权重系数列表,对向量进行转换
    transformer = ElementwiseProduct(scalingVec=Vectors.dense([0.0, 1.0, 2.0]),
                                     inputCol="vector", outputCol="transformedVector")
    # Batch transform the vectors to create new column:
    transformer.transform(df).show()

相关文章

网友评论

      本文标题:pyspark 元素级乘法ElementwiseProduct

      本文链接:https://www.haomeiwen.com/subject/xkqrvltx.html