先来一个整体图:
image.png
一.cpu和内存的关系
大致关系: CPU Cache --> 前端总线 FSB (下图中的Bus) --> Memory 内存
CPU 为了更快的执行代码。于是当从内存中读取数据时,并不是只读自己想要的部分。而是读取足够的字节来填入高速缓存行(缓存预读性原理)。根据不同的 CPU ,高速缓存行大小不同。如 X86 是 32BYTES ,而 ALPHA 是 64BYTES 。并且始终在第 32 个字节或第 64 个字节处对齐(内存对齐)。这样,当 CPU 访问相邻的数据时,就不必每次都从内存中读取,提高了速度。 因为访问内存要比访问高速缓存用的时间多得多。
下面一张图可以看出各级缓存之间的响应时间差距,以及内存到底有多慢!
image.png
二. CPU Cache和Cache Line
什么是Cache Line
Cache Line可以简单的理解为CPU Cache中的最小缓存单位。目前主流的CPU Cache的Cache Line大小都是64Bytes。假设我们有一个512字节的一级缓存,那么按照64B的缓存单位大小来算,这个一级缓存所能存放的缓存个数就是512/64 = 8个。具体参见下图:
image.png例子:一段逻辑代码,会从命令行接收一个参数作为数组的大小创建一个数量为N的int数组。并依次循环的从这个数组中进行数组内容访问,循环10亿次。最终输出数组总大小和对应总执行时间。
如果我们把这些数据做成折线图后就会发现:总执行时间在数组大小超过64Bytes时有较为明显的拐点。原因是当数组小于64Bytes时数组极有可能落在一条Cache Line内,而一个元素的访问就会使得整条Cache Line被填充,因而使得后面的若干个元素受益于缓存带来的加速。而当数组大于64Bytes时,必然至少需要两条Cache Line,继而在循环访问时会出现两次Cache Line的填充,由于缓存填充的时间远高于数据访问的响应时间,因此多一次缓存填充对于总执行的影响会被放大,最终得到下图的结果:
image.png我们来看下面这个C语言中常用的循环优化例子
下面两段代码中,第一段代码在C语言中总是比第二段代码的执行速度要快。具体的原因相信你仔细阅读了Cache Line的介绍后就很容易理解了。
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
int num;
arr[i][j] = num;
}
}
//在内存中顺序填充数组,会在cpu缓存行中也顺序填充
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
int num;
arr[j][i] = num;
}
}
////在内存中不连续填充,会在多个cpu缓存行中填充
三. 下面看CPU Cache与Memory关系图
image.png上述左图是最简单的高速缓存的图示,数据的读取和存储都经过高速缓存,CPU核心和高速缓存之间有一条特殊的快速通道,在这个简化的图示上,主存(main memory)与高速缓存(cache)都连在系统总线上。这条总线同时还用于其他组件之间的通信。在高速缓存出现后不久,系统变得更加复杂,高速缓存与主存之间的速度差异被拉大,直到加入了另一级的缓存(由于加大一级缓存的做法从经济上考虑是行不通的,所以有了二级缓存甚至三级缓存)。新加入的这些缓存比第一缓存更大但是更慢。
多核发达的年代。情况就不能那么简单了。试想下面这样一个情况。
1、CPU1 读取了一个字节,以及它和它相邻的字节被读入 CPU1 的高速缓存。
2、CPU2 做了上面同样的工作。这样 CPU1 , CPU2 的高速缓存拥有同样的数据。
3、CPU1 修改了那个字节,被修改后,那个字节被放回 CPU1 的高速缓存行。但是该信息并没有被写入 RAM 。
4、CPU2 访问该字节,但由于 CPU1 并未将数据写入 RAM ,导致了数据不同步。
为了解决这个问题,芯片设计者制定了一个规则。当一个 CPU 修改高速缓存行中的字节时,计算机中的其它 CPU 会被通知,它们的高速缓存将视为无效。于是,在上面的情况下, CPU2 发现自己的高速缓存中数据已无效, CPU1 将立即把自己的数据写回 RAM ,然后 CPU2 重新读取该数据。 可以看出,高速缓存行在多处理器上会导致一些不利。
四. 多核CPU多级缓存一致性协议MESI
多核CPU的情况下有多个一级缓存,如何保证缓存内部数据的一致,不让系统数据混乱。这里就引出了一个一致性的协议MESI。
MESI协议缓存状态
MESI 是指4种状态的首字母。每个Cache line有4个状态,可用2个bit表示,它们分别是:
缓存行(Cache line):缓存存储数据的单元。
image.png举个栗子来说:
假设cache 1 中有一个变量x = 0的cache line 处于S状态(共享)。
那么其他拥有x变量的cache 2、cache 3等x的cache line调整为S状态(共享)或者调整为 I 状态(无效)。
多核缓存协同操作
假设有三个CPU A、B、C,对应三个缓存分别是cache a、b、 c。在主内存中定义了x的引用值为0。
image.png单核读取
那么执行流程是:
CPU A发出了一条指令,从主内存中读取x。
从主内存通过bus读取到缓存中(远端读取Remote read),这是该Cache line修改为E状态(独享).
双核读取
那么执行流程是:
CPU A发出了一条指令,从主内存中读取x。
CPU A从主内存通过bus读取到 cache a中并将该cache line 设置为E状态。
CPU B发出了一条指令,从主内存中读取x。
CPU B试图从主内存中读取x时,CPU A检测到了地址冲突。这时CPU A对相关数据做出响应。此时x 存储于cache a和cache b中,x在chche a和cache b中都被设置为S状态(共享)。
修改数据
那么执行流程是:
CPU A 计算完成后发指令需要修改x.
CPU A 将x设置为M状态(修改)并通知缓存了x的CPU B, CPU B将本地cache b中的x设置为I状态(无效)
CPU A 对x进行赋值。
同步数据
那么执行流程是:
CPU B 发出了要读取x的指令。
CPU B 通知CPU A,CPU A将修改后的数据同步到主内存并且cache a 修改为E(独享)
CPU A同步CPU B的x,将cache a和同步后cache b中的x设置为S状态(共享)。
五. Cache淘汰策略
常见的淘汰策略主要有LRU和Random两种。通常意义下LRU对于Cache的命中率会比Random更好,所以CPU Cache的淘汰策略选择的是LRU。当然也有些实验显示在Cache Size较大的时候Random策略会有更高的命中率。
网友评论