内核缓冲区的管理
物理内存的分配和释放----binder_update_page_range
static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
void *start, void *end,
struct vm_area_struct *vma) // vma 是要映射的用户空间虚拟地址
{
void *page_addr;
unsigned long user_page_addr;
struct page **page;
struct mm_struct *mm;
/*
* struct vm_struct : 描述内核空间虚拟地址,对应于 物理内存 的高端内存
* struct vm_area_struct : 描述用户空间虚拟地址
*/
if (vma)
mm = NULL;
else
mm = get_task_mm(alloc->tsk);
if (mm) {
down_write(&mm->mmap_sem);
vma = alloc->vma;
}
if (allocate == 0)
goto free_range;
for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
*page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); // 真正的去分配一页物理内存
map_kernel_range_noflush((unsigned long)page_addr, // 将物理页面和内核空间虚拟地址关联(map)
PAGE_SIZE, PAGE_KERNEL, page);
flush_cache_vmap((unsigned long)page_addr, // 刷 cache
(unsigned long)page_addr + PAGE_SIZE);
user_page_addr =
(uintptr_t)page_addr + alloc->user_buffer_offset;
vm_insert_page(vma, user_page_addr, page[0]); // 将物理页面和用户空间虚拟地址关联
}
if (mm) {
up_write(&mm->mmap_sem);
mmput(mm);
}
return 0;
free_range:
for (page_addr = end - PAGE_SIZE; page_addr >= start;
page_addr -= PAGE_SIZE) {
page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
if (vma)
zap_page_range(vma, (uintptr_t)page_addr +
alloc->user_buffer_offset, PAGE_SIZE, NULL); // 解除物理页面在用户空间的映射
err_vm_insert_page_failed:
unmap_kernel_range((unsigned long)page_addr, PAGE_SIZE); // 解除物理页面在内核空间的映射
err_map_kernel_failed:
__free_page(*page); // 释放物理页面
*page = NULL;
err_alloc_page_failed:
;
}
err_no_vma:
if (mm) {
up_write(&mm->mmap_sem);
mmput(mm);
}
return vma ? -ENOMEM : -ESRCH;
}
Binder 内存分配
struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
size_t data_size, // size of user data buffer
size_t offsets_size, // user specified buffer offset
size_t extra_buffers_size, // size of extra space for meta-data (eg, security context)
int is_async) // buffer for async transaction
{
struct binder_buffer *buffer;
mutex_lock(&alloc->mutex);
buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
extra_buffers_size, is_async);
mutex_unlock(&alloc->mutex);
return buffer;
}
- binder_alloc_new_buf_locked
/*
使用 BC_TRANSACTION 或 BC_REPLY 与 Binder 交互时,会从 Userspace 传递 binder_transaction_data 到 Driver。
在 binder_transaction_data 中有一个数据缓冲区和偏移数组缓冲区,这两个缓冲区的内容需要拷贝到目标进程的内核缓冲区中。
注意:这里是一次拷贝。直接拷贝到 目标进程 的内核缓冲区中。
*/
struct binder_buffer *binder_alloc_new_buf_locked(struct binder_alloc *alloc,
size_t data_size,
size_t offsets_size,
size_t extra_buffers_size,
int is_async)
{
struct rb_node *n = alloc->free_buffers.rb_node; // 从 free_buffers 中找合适的 buffer
struct binder_buffer *buffer;
size_t buffer_size;
struct rb_node *best_fit = NULL;
void *has_page_addr;
void *end_page_addr;
size_t size, data_offsets_size;
int ret;
data_offsets_size = ALIGN(data_size, sizeof(void *)) +
ALIGN(offsets_size, sizeof(void *));
// 将 data_size 和 offsets_size 对其到 void * , 然后 相加,就计算出了要分配的空间大小。
size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *)); // 再加上 附加 空间的大小
if (is_async &&
alloc->free_async_space < size + sizeof(struct binder_buffer)) {
// 如果是异步事务,并且剩余可分配的异步事务空间小于要分配的空间,则报错
binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
"%d: binder_alloc_buf size %zd failed, no async space left\n",
alloc->pid, size);
return ERR_PTR(-ENOSPC);
}
/* Pad 0-size buffers so they get assigned unique addresses */
size = max(size, sizeof(void *)); // size 最小不得小于 sizeof(void*)
// 遍历 红黑树 free_buffers,找出空间合适的 binder_buffer
while (n) {
buffer = rb_entry(n, struct binder_buffer, rb_node);
BUG_ON(!buffer->free);
buffer_size = binder_alloc_buffer_size(alloc, buffer);
if (size < buffer_size) {
best_fit = n;
n = n->rb_left;
} else if (size > buffer_size)
n = n->rb_right;
else {
best_fit = n;
break;
}
}
// 没有找到合适 binder_buffer,出错
if (best_fit == NULL) {
size_t allocated_buffers = 0;
size_t largest_alloc_size = 0;
size_t total_alloc_size = 0;
size_t free_buffers = 0;
size_t largest_free_size = 0;
size_t total_free_size = 0;
// 遍历 allocated_buffers, 计算总共分配的空间,以及分配过的最大的一块buffer
for (n = rb_first(&alloc->allocated_buffers); n != NULL;
n = rb_next(n)) {
buffer = rb_entry(n, struct binder_buffer, rb_node);
buffer_size = binder_alloc_buffer_size(alloc, buffer);
allocated_buffers++;
total_alloc_size += buffer_size;
if (buffer_size > largest_alloc_size)
largest_alloc_size = buffer_size;
}
// 遍历 free_buffers, 计算所有的空闲Buffer的大小,以及最大的空闲buffer的大小
for (n = rb_first(&alloc->free_buffers); n != NULL;
n = rb_next(n)) {
buffer = rb_entry(n, struct binder_buffer, rb_node);
buffer_size = binder_alloc_buffer_size(alloc, buffer);
free_buffers++;
total_free_size += buffer_size;
if (buffer_size > largest_free_size)
largest_free_size = buffer_size;
}
// 这里的 log 信息对于 内存调试尤为重要
pr_err("%d: binder_alloc_buf size %zd failed, no address space\n",
alloc->pid, size);
pr_err("allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
total_alloc_size, allocated_buffers, largest_alloc_size,
total_free_size, free_buffers, largest_free_size);
return ERR_PTR(-ENOSPC);
}
// 找到了 一块比要分配的buffer稍大 的一块空闲的 binder_buffer
if (n == NULL) {
buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
buffer_size = binder_alloc_buffer_size(alloc, buffer);
// buffer 是找到的比要分配空间稍大的一块空闲buffer
// buffer_size 是这块空闲buffer的大小
}
/*
没有合适大小的 buffer,只能用比 所需空间 稍大一点的 buffer。
那么,就需要对 这块稍大的 空闲buffer 进行裁剪。
如果剩余的空间小于 4个字节,就不裁剪了。
否则剩余的 空闲 buffer 依然放入到 空闲红黑树中供下次使用。
*/
// 计算 空闲buffer 的结束地址所在的页面的起始地址
has_page_addr =
(void *)(((uintptr_t)buffer->data + buffer_size) & PAGE_MASK);
WARN_ON(n && buffer_size != size);
// size 是要分配的空间大小,end_page_addr 是要分配的结束地址对齐到页面边界的地址
end_page_addr =
(void *)PAGE_ALIGN((uintptr_t)buffer->data + size);
// has_page_addr: 在 空闲buffer红黑树中 找到的一块 空闲buffer,并且将结束地址对齐到结束地址所在页面的起始地址
// end_page_addr: 在 空闲buffer红黑树中 找到的一块 空闲buffer,将首地址 + 要分配的大小 = 要分配的结束地址,然后将之对齐到页面起始地址
if (end_page_addr > has_page_addr) // 对齐之后的地址修正
end_page_addr = has_page_addr;
// 分配物理空间
binder_update_page_range(alloc, 1,
(void *)PAGE_ALIGN((uintptr_t)buffer->data), end_page_addr, NULL);
// 将剩余的空闲buffer插入到 free buffer 的红黑树中
if (buffer_size != size) {
struct binder_buffer *new_buffer;
new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
new_buffer->data = (u8 *)buffer->data + size;
list_add(&new_buffer->entry, &buffer->entry);
/*
* 这句话对于弄懂 alloc->buffers 这个链表来说至关重要.
* alloc->buffers 这个链表的顺序就是 buffer->data 的大小.
* alloc->buffers : 最开始是一块大的 空buffer.
* 第一次分配: 大的 buffer 被切成两块,前一部分是 和 后一部分 分别用 不同的 binder_buffer 描述,然后将这两个 binder_buffer 链接.
*/
new_buffer->free = 1;
binder_insert_free_buffer(alloc, new_buffer);
}
// 将 buffer 从 free_buffers 中删除
rb_erase(best_fit, &alloc->free_buffers);
// 初始化新分配的 buffer
buffer->free = 0;
buffer->free_in_progress = 0;
// 将当前 binder_buffer 插入到 allocated_buffers 的红黑树中.
binder_insert_allocated_buffer_locked(alloc, buffer);
buffer->data_size = data_size;
buffer->offsets_size = offsets_size;
buffer->async_transaction = is_async;
buffer->extra_buffers_size = extra_buffers_size;
// 如果是 异步事件, 那么更新 binder_alloc 的 异步事件空闲Buffer
if (is_async) {
alloc->free_async_space -= size + sizeof(struct binder_buffer);
}
return buffer;
}
## Binder 内存释放
- binder_alloc_free_buf
```c
void binder_alloc_free_buf(struct binder_alloc *alloc,
struct binder_buffer *buffer)
{
mutex_lock(&alloc->mutex);
binder_free_buf_locked(alloc, buffer);
mutex_unlock(&alloc->mutex);
}
// 计算 buffer->data 地址所在页面的起始地址
static void *buffer_start_page(struct binder_buffer *buffer)
{
return (void *)((uintptr_t)buffer->data & PAGE_MASK);
}
// 计算 buffer->data-1 即 上一个 buffer 地址所在页面的起始地址
static void *prev_buffer_end_page(struct binder_buffer *buffer)
{
return (void *)(((uintptr_t)(buffer->data) - 1) & PAGE_MASK); // -1 其实是减去的 4 个字节
}
static void binder_delete_free_buffer(struct binder_alloc *alloc,
struct binder_buffer *buffer)
{
struct binder_buffer *prev, *next = NULL;
bool to_free = true;
BUG_ON(alloc->buffers.next == &buffer->entry);
prev = binder_buffer_prev(buffer); // 找到 该buffer 在 binder_alloc->buffers list 中的前一个 binder_buffer
BUG_ON(!prev->free);
// 如果当前 buffer 和 上一个 buffer 在同一个物理页面上
if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
to_free = false;
}
if (!list_is_last(&buffer->entry, &alloc->buffers)) {
/*
* 如果当前 buffer 不是 alloc->buffers 的最后一个 buffer
*/
next = binder_buffer_next(buffer);
// 如果当前 buffer 和 下一个 buffer 在同一个物理页面上.
if (buffer_start_page(next) == buffer_start_page(buffer)) {
to_free = false;
}
}
if (PAGE_ALIGNED(buffer->data)) {
to_free = false;
}
if (to_free) {
/*
* buffer_start_page(buffer) ~ buffer_start_page(buffer) + PAGE_SIZE
* 这个地址范围就是该 buffer 所在物理页面的整个页面的地址空间.
*/
binder_update_page_range(alloc, 0, buffer_start_page(buffer),
buffer_start_page(buffer) + PAGE_SIZE,
NULL);
}
list_del(&buffer->entry);
kfree(buffer);
}
static void binder_free_buf_locked(struct binder_alloc *alloc,
struct binder_buffer *buffer)
{
size_t size, buffer_size;
// 计算要释放的 binder_buffer 的大小,因为在管理 binder_buffer 时是以空间大小管理的
buffer_size = binder_alloc_buffer_size(alloc, buffer);
size = ALIGN(buffer->data_size, sizeof(void *)) +
ALIGN(buffer->offsets_size, sizeof(void *)) +
ALIGN(buffer->extra_buffers_size, sizeof(void *));
if (buffer->async_transaction) {
alloc->free_async_space += size + sizeof(struct binder_buffer);
}
binder_update_page_range(alloc, 0,
(void *)PAGE_ALIGN((uintptr_t)buffer->data),
(void *)(((uintptr_t)buffer->data + buffer_size) & PAGE_MASK),
NULL);
// 从 allocated_buffers 红黑树中删除该 binder_buffer
rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
buffer->free = 1;
if (!list_is_last(&buffer->entry, &alloc->buffers)) {
/*
* 如果当前 buffer 不是 alloc->buffers 的最后一个 buffer, 会判断该 buffer 的下一个 buffer
* 如果下一个 buffer 也是 空buffer,那么会合并两个buffer
*/
struct binder_buffer *next = binder_buffer_next(buffer);
if (next->free) {
rb_erase(&next->rb_node, &alloc->free_buffers); // 将 next buffer 从 free_buffers 红黑树中删除
binder_delete_free_buffer(alloc, next);
}
}
// 对 该buffer 的前一个 buffer 的处理方式同 next buffer 的处理方式一致
if (alloc->buffers.next != &buffer->entry) {
struct binder_buffer *prev = binder_buffer_prev(buffer);
if (prev->free) {
binder_delete_free_buffer(alloc, buffer);
rb_erase(&prev->rb_node, &alloc->free_buffers);
buffer = prev;
}
}
// 将 该buffer 插入到 free_buffers 红黑树中.(此时的 buffer 可能是和前一个或后一个 空buffer 合并过的buffer)
binder_insert_free_buffer(alloc, buffer);
}
Binder 内存查询.
- binder_alloc_prepare_to_free
/*
* 根据给定的 user ptr 查询 binder_buffer
*/
struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
uintptr_t user_ptr)
{
struct binder_buffer *buffer;
mutex_lock(&alloc->mutex);
buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
mutex_unlock(&alloc->mutex);
return buffer;
}
- binder_alloc_prepare_to_free_locked
/*
* 核心就是 allocated_buffers 红黑树的 遍历
*/
static struct binder_buffer *binder_alloc_prepare_to_free_locked(
struct binder_alloc *alloc,
uintptr_t user_ptr)
{
struct rb_node *n = alloc->allocated_buffers.rb_node;
struct binder_buffer *buffer;
void *kern_ptr;
kern_ptr = (void *)(user_ptr - alloc->user_buffer_offset);
while (n) {
buffer = rb_entry(n, struct binder_buffer, rb_node);
BUG_ON(buffer->free);
if (kern_ptr < buffer->data)
n = n->rb_left;
else if (kern_ptr > buffer->data)
n = n->rb_right;
else {
/*
* Guard against user threads attempting to
* free the buffer twice
*/
if (buffer->free_in_progress) {
pr_err("%d:%d FREE_BUFFER u%016llx user freed buffer twice\n",
alloc->pid, current->pid, (u64)user_ptr);
return NULL;
}
buffer->free_in_progress = 1;
return buffer;
}
}
return NULL;
}
Binder allocator 释放
- binder_alloc_deferred_release
void binder_alloc_deferred_release(struct binder_alloc *alloc)
{
struct rb_node *n;
int buffers, page_count;
struct binder_buffer *buffer;
BUG_ON(alloc->vma);
buffers = 0;
mutex_lock(&alloc->mutex);
while ((n = rb_first(&alloc->allocated_buffers))) {
buffer = rb_entry(n, struct binder_buffer, rb_node);
/* Transaction should already have been freed */
BUG_ON(buffer->transaction);
binder_free_buf_locked(alloc, buffer);
buffers++;
}
while (!list_empty(&alloc->buffers)) {
buffer = list_first_entry(&alloc->buffers,
struct binder_buffer, entry);
WARN_ON(!buffer->free);
list_del(&buffer->entry);
WARN_ON_ONCE(!list_empty(&alloc->buffers));
kfree(buffer);
}
page_count = 0;
if (alloc->pages) {
int i;
for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
void *page_addr;
if (!alloc->pages[i])
continue;
page_addr = alloc->buffer + i * PAGE_SIZE;
binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
"%s: %d: page %d at %pK not freed\n",
__func__, alloc->pid, i, page_addr);
unmap_kernel_range((unsigned long)page_addr, PAGE_SIZE);
__free_page(alloc->pages[i]);
page_count++;
}
kfree(alloc->pages);
vfree(alloc->buffer);
}
mutex_unlock(&alloc->mutex);
binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
"%s: %d buffers %d, pages %d\n",
__func__, alloc->pid, buffers, page_count);
}
网友评论