美文网首页
Pandas.DataFrame isna()方法和isnull

Pandas.DataFrame isna()方法和isnull

作者: 赵阳_c149 | 来源:发表于2019-10-12 13:18 被阅读0次

    在对数据进行清洗的时候,一般都需要处理数据集中的空值。首先需要查看各列是否存在空值,然后就可以使用 .fillna() 来填补空值或者用.dropna()来丢弃数据表中包含空值的某些行或者列。

    对于查看各列是否存在空值,有两种方法:Pandas.DataFrame isna()和isnull()。事实上,这两种方法并没有什么区别,他们做的是相同的事情。在R语言中,nanull是两种不同的东西:

    NULL represents the null object in R: it is a reserved word.
    NULL is often returned by expressions and functions whose values are
    undefined.

    NA is a logical constant of length 1 which contains a missing
    value indicator. NA can be freely coerced to any other vector
    type except raw. There are also constants NA_integer_,
    NA_real_, NA_complex_ and NA_character_ of the other atomic
    vector types which support missing values: all of these are
    reserved words in the R language.

    然而,在python中,pandas是构建在numpy之上的。在numpy中,既没有na也没有null,而只有NaN (意思是“Not a Number”),因此,pandas也沿用NaN值。

    简单的说:

    • numpy用isnan()检查是否存在NaN。
    • pandas用.isna()或者.isnull()检查是否存在NaN。
      存在着两种方法,只是因为pandas对R的模仿。

    原文来自:
    https://datascience.stackexchange.com/questions/37878/difference-between-isna-and-isnull-in-pandas

    相关文章

      网友评论

          本文标题:Pandas.DataFrame isna()方法和isnull

          本文链接:https://www.haomeiwen.com/subject/xocqmctx.html