美文网首页
神经网络算法的初步构建

神经网络算法的初步构建

作者: 北京挖掘机 | 来源:发表于2018-07-13 13:51 被阅读0次

    1 - Packages

    Let's first import all the packages that you will need during this assignment.

    • numpy is the fundamental package for scientific computing with Python.
    • sklearn provides simple and efficient tools for data mining and data analysis.
    • matplotlib is a library for plotting graphs in Python.
    • testCases provides some test examples to assess the correctness of your functions
    • planar_utils provide various useful functions used in this assignment
    #Package imports
    import numpy as np
    import matplotlib.pyplot as plt
    from testCases_v2 import *
    import sklearn
    import sklearn.datasets
    import sklearn.linear_model
    from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
    %matplotlib inline
    np.random.seed(1) # set a seed so that the results are consistent
    

    Simple Logistic Regression

    Before building a full neural network, lets first see how logistic regression performs on this problem. You can use sklearn's built-in functions to do that. Run the code below to train a logistic regression classifier on the dataset.

    # Plot the decision boundary for logistic regression
    plot_decision_boundary(lambda x: clf.predict(x), X, Y)
    plt.title("Logistic Regression")
    # Print accuracy
    LR_predictions = clf.predict(X.T)
    print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
           '% ' + "(percentage of correctly labelled datapoints)")
    
    image.png

    4.1 - Defining the neural network structure

    Exercise: Define three variables:

    • n_x: the size of the input layer
    • n_h: the size of the hidden layer (set this to 4)
    • n_y: the size of the output layer
      Hint: Use shapes of X and Y to find n_x and n_y. Also, hard code the hidden layer size to be 4.
    def layer_sizes(X,Y):
        """
        Arguments:
        X -- input dataset of shape (input size, number of examples)
        Y -- labels of shape (output size, number of examples)
        
        Returns:
        n_x -- the size of the input layer
        n_h -- the size of the hidden layer
        n_y -- the size of the output layer
        """
        ### START CODE HERE ### (≈ 3 lines of code)
        n_x = X.shape[0]# size of input layer
        n_h = 4
        n_y = Y.shape[0] # size of output layer
        ### END CODE HERE ###
        return (n_x, n_h, n_y)
    

    4.2 - Initialize the model's parameters

    Exercise: Implement the function initialize_parameters().

    Instructions:

    • Make sure your parameters' sizes are right. Refer to the neural network figure above if needed.
    • You will initialize the weights matrices with random values.
      • Use: np.random.randn(a,b) * 0.01 to randomly initialize a matrix of shape (a,b).
    • You will initialize the bias vectors as zeros.
      • Use: np.zeros((a,b)) to initialize a matrix of shape (a,b) with zeros.
    # GRADED FUNCTION: initialize_parameters
    
    def initialize_parameters(n_x, n_h, n_y):
        """
        Argument:
        n_x -- size of the input layer
        n_h -- size of the hidden layer
        n_y -- size of the output layer
        
        Returns:
        params -- python dictionary containing your parameters:
                        W1 -- weight matrix of shape (n_h, n_x)
                        b1 -- bias vector of shape (n_h, 1)
                        W2 -- weight matrix of shape (n_y, n_h)
                        b2 -- bias vector of shape (n_y, 1)
        """
        
        np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.
        
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = np.random.randn(n_h,n_x)*0.01
        b1 = np.zeros((n_h,1))
        W2 = np.random.randn(n_y,n_h)*0.01
        b2 = np.zeros((n_y,1))
        ### END CODE HERE ###
        
        assert (W1.shape == (n_h, n_x))
        assert (b1.shape == (n_h, 1))
        assert (W2.shape == (n_y, n_h))
        assert (b2.shape == (n_y, 1))
        
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        
        return parameters
    

    4.3 - The Loop

    Question: Implement forward_propagation().

    Instructions:

    • Look above at the mathematical representation of your classifier.
    • You can use the function sigmoid(). It is built-in (imported) in the notebook.
    • You can use the function np.tanh(). It is part of the numpy library.
    • The steps you have to implement are:
      1. Retrieve each parameter from the dictionary "parameters" (which is the output of initialize_parameters()) by using parameters[".."].
      2. Implement Forward Propagation. Compute Z[1],,A[1],Z[2],A[2](the vector of all your predictions on all the examples in the training set).
    • Values needed in the backpropagation are stored in "cache". The cache will be given as an input to the backpropagation function.
    # GRADED FUNCTION: forward_propagation
    
    def forward_propagation(X, parameters):
        """
        Argument:
        X -- input data of size (n_x, m)
        parameters -- python dictionary containing your parameters (output of initialization function)
        
        Returns:
        A2 -- The sigmoid output of the second activation
        cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
        """
        # Retrieve each parameter from the dictionary "parameters"
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = parameters['W1']
        b1 = parameters['b1']
        W2 = parameters['W2']
        b2 = parameters['b2']
        ### END CODE HERE ###
        
        # Implement Forward Propagation to calculate A2 (probabilities)
        ### START CODE HERE ### (≈ 4 lines of code)
        Z1 = np.dot(W1,X)+b1
        A1 = np.tanh(Z1)
        Z2 = np.dot(W2,A1)+b2
        A2 = sigmoid(Z2)
        ### END CODE HERE ###
        
        assert(A2.shape == (1, X.shape[1]))
        
        cache = {"Z1": Z1,
                 "A1": A1,
                 "Z2": Z2,
                 "A2": A2}
        
        return A2, cache
    
    
    def compute_cost(A2, Y, parameters):
        """
        Computes the cross-entropy cost given in equation (13)
        
        Arguments:
        A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
        Y -- "true" labels vector of shape (1, number of examples)
        parameters -- python dictionary containing your parameters W1, b1, W2 and b2
        
        Returns:
        cost -- cross-entropy cost given equation (13)
        """
        
        m = Y.shape[1] # number of example
    
        # Compute the cross-entropy cost
        ### START CODE HERE ### (≈ 2 lines of code)
        logprobs = np.multiply(np.log(A2),Y)+np.multiply(np.log(1-A2),(1-Y))
        cost = -1/m*(np.sum(logprobs))
        ### END CODE HERE ###
        
        cost = np.squeeze(cost)     # makes sure cost is the dimension we expect. 
                                    # E.g., turns [[17]] into 17 
        assert(isinstance(cost, float))
        
        return cost
    
    # GRADED FUNCTION: backward_propagation
    
    def backward_propagation(parameters, cache, X, Y):
        """
        Implement the backward propagation using the instructions above.
        
        Arguments:
        parameters -- python dictionary containing our parameters 
        cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
        X -- input data of shape (2, number of examples)
        Y -- "true" labels vector of shape (1, number of examples)
        
        Returns:
        grads -- python dictionary containing your gradients with respect to different parameters
        """
        m = X.shape[1]
        
        # First, retrieve W1 and W2 from the dictionary "parameters".
        ### START CODE HERE ### (≈ 2 lines of code)
        W1 = parameters['W1']
        W2 = parameters['W2']
        ### END CODE HERE ###
            
        # Retrieve also A1 and A2 from dictionary "cache".
        ### START CODE HERE ### (≈ 2 lines of code)
        A1 = cache['A1']
        A2 = cache['A2']
        ### END CODE HERE ###
        
        # Backward propagation: calculate dW1, db1, dW2, db2. 
        ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
        dZ2 = A2-Y
        dW2 = 1/m*np.dot(dZ2,(A1.T))
        db2 = 1/m*(np.sum(dZ2,axis=1,keepdims=True))
        dZ1 = np.dot(W2.T,dZ2) * (1 - np.power(cache["A1"],2))
        dW1 = 1/m*np.dot(dZ1,(X.T))
        db1 = 1/m*(np.sum(dZ1,axis=1,keepdims=True))
        ### END CODE HERE ###
        
        grads = {"dW1": dW1,
                 "db1": db1,
                 "dW2": dW2,
                 "db2": db2}
        
        return grads
    
    # GRADED FUNCTION: update_parameters
    
    def update_parameters(parameters, grads, learning_rate = 1.2):
        """
        Updates parameters using the gradient descent update rule given above
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        grads -- python dictionary containing your gradients 
        
        Returns:
        parameters -- python dictionary containing your updated parameters 
        """
        # Retrieve each parameter from the dictionary "parameters"
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = parameters['W1']
        b1 = parameters['b1']
        W2 = parameters['W2']
        b2 = parameters['b2']
        ### END CODE HERE ###
        
        # Retrieve each gradient from the dictionary "grads"
        ### START CODE HERE ### (≈ 4 lines of code)
        dW1 = grads['dW1']
        db1 = grads['db1']
        dW2 = grads['dW2']
        db2 = grads['db2']
        ## END CODE HERE ###
        
        # Update rule for each parameter
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = -dW1*learning_rate+W1
        b1 = -db1*learning_rate+b1
        W2 = -dW2*learning_rate+W2
        b2 = -db2*learning_rate+b2
        ### END CODE HERE ###
        
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        
        return parameters
    

    4.4 - Integrate parts 4.1, 4.2 and 4.3 in nn_model()

    Question: Build your neural network model in nn_model().

    Instructions: The neural network model has to use the previous functions in the right order.

    # GRADED FUNCTION: nn_model
    
    def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
        """
        Arguments:
        X -- dataset of shape (2, number of examples)
        Y -- labels of shape (1, number of examples)
        n_h -- size of the hidden layer
        num_iterations -- Number of iterations in gradient descent loop
        print_cost -- if True, print the cost every 1000 iterations
        
        Returns:
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
        
        np.random.seed(3)
        n_x = layer_sizes(X, Y)[0]
        n_y = layer_sizes(X, Y)[2]
        
        # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
        ### START CODE HERE ### (≈ 5 lines of code)
        parameters = initialize_parameters(n_x, n_h, n_y)
        W1 = parameters['W1']
        b1 = parameters['b1']
        W2 = parameters['W2']
        b2 = parameters['b2']
        ### END CODE HERE ###
        
        # Loop (gradient descent)
    
        for i in range(0, num_iterations):
             
            ### START CODE HERE ### (≈ 4 lines of code)
            # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
            A2, cache = forward_propagation(X, parameters)
            
            # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
            cost = compute_cost(A2, Y, parameters)
     
            # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
            grads = backward_propagation(parameters, cache, X, Y)
     
            # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
            parameters = update_parameters(parameters, grads, learning_rate = 1.2)
            
            ### END CODE HERE ###
            
            # Print the cost every 1000 iterations
            if print_cost and i % 1000 == 0:
                print ("Cost after iteration %i: %f" %(i, cost))
    
        return parameters
    

    4.5 Predictions

    Question: Use your model to predict by building predict(). Use forward propagation to predict results.
    Reminder: predictions =1, if activation>0.5, 0, if activation<=0.5.
    As an example, if you would like to set the entries of a matrix X to 0 and 1 based on a threshold you would do: X_new = (X > threshold)

    # GRADED FUNCTION: predict
    
    def predict(parameters, X):
        """
        Using the learned parameters, predicts a class for each example in X
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        X -- input data of size (n_x, m)
        
        Returns
        predictions -- vector of predictions of our model (red: 0 / blue: 1)
        """
        
        # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
        ### START CODE HERE ### (≈ 2 lines of code)
        A2, cache = forward_propagation(X, parameters)
        predictions = A2>0.5
        ### END CODE HERE ###
        
        return predictions
    
    
    
    

    相关文章

      网友评论

          本文标题:神经网络算法的初步构建

          本文链接:https://www.haomeiwen.com/subject/xoujpftx.html