美文网首页机器学习学习笔记
scrapy爬取淘宝头条文章做文本分类

scrapy爬取淘宝头条文章做文本分类

作者: 老周算法 | 来源:发表于2017-11-08 16:09 被阅读78次

搜狗新闻与清华新闻文章都是偏新闻类别,若要商品类别文本,则需要爬取,代码如下,参考https://www.cnblogs.com/sirkevin/p/5805795.html

1, spider.py:

import time
import scrapy
from book_project.items import BookItem

class BookInfoSpider(scrapy.Spider):
    name = "textinfo"
    allowed_domains = ["bzbzc.com"]
    start_urls = [
        "http://www.bzbzc.com/lvxing",
    ]

    def parse(self, response):
        base_url = "http://www.bzbzc.com/lvxing/list_61_{0}.html"
        for page in range(1, 2):
            print(base_url.format(page))
            yield scrapy.Request(base_url.format(page), dont_filter=True, callback=self.parse_page)


    def parse_page(self, response):
        for url in response.xpath('//h2/a/@href').extract():
            yield scrapy.Request(url, callback=self.parse_text_info)

    def parse_text_info(self, response):
        content = response.xpath('//div[@class="article-content"]/p/text()').extract()
        origin = response.xpath('//div[@class="single-time text-center"]/text()').extract()
        title = response.xpath('//h1[@class="single-title text-center"]/text()').extract()
        item = BookItem()  
        item['title'] = title
        item['origin'] = origin
        item['content'] = content
        item['url']  = response.url
        name = time.time()
        with open("./data/{0}.txt".format(name),'w') as f:
            f.write(','.join(content))
        yield item

2, run.py(运行此文件 python run.py)

import os
os.system('scrapy crawl textinfo -o data.csv')

3, pipelines.py
class BookProjectPipeline(object):
def process_item(self, item, spider):
return item

4, items.py
import scrapy
class BookItem(scrapy.Item):
title = scrapy.Field()
origin = scrapy.Field()
content = scrapy.Field()
url = scrapy.Field()

相关文章

网友评论

    本文标题:scrapy爬取淘宝头条文章做文本分类

    本文链接:https://www.haomeiwen.com/subject/xplymxtx.html