美文网首页DL/ML/生物信息
200行代码实现CNN卷积结果的可视化

200行代码实现CNN卷积结果的可视化

作者: 吃醋不吃辣的雷儿 | 来源:发表于2022-09-23 13:48 被阅读0次
    from PIL import Image
    import os
    import numpy as np
    import torch
    import torch.nn as nn
    import copy
    from torch.autograd import Variable
    from torchvision import models
    import matplotlib.cm as mpl_color_map
    
    
    def preprocess(pil_im, resize=True):
        """
            Processes image for CNNs
    
        Args:
            PIL_img (PIL_img): PIL Image or numpy array to process
            resize_im (bool): Resize to 224 or not
        returns:
            im_as_var (torch variable): Variable that contains processed float tensor
        """
        mean = [0.485, 0.456, 0.406]
        std = [0.229, 0.224, 0.225] # mean and std for RGB channels in ImageNet
        if type(pil_im) != Image.Image:
            pil_im = Image.fromarray(pil_im) # convert input image to Image.image
        if resize:
            pil_im = pil_im.resize((224, 224), Image.ANTIALIAS) # resize image as width 224 and height 224
        image_array = np.float32(pil_im)
        image_array = image_array.transpose(2, 0, 1) # transpose to (D, W, H) form
        
        for channel, _ in enumerate(image_array):
            image_array[channel] /= 255
            image_array[channel] -= mean[channel]
            image_array[channel] /= std[channel] # normalize image array
        
        image_tensor = torch.from_numpy(image_array).float()
        image_tensor.unsqueeze_(0) # add one channel shaped as 1, 3, 224, 224
        image_variable = Variable(image_tensor, requires_grad=True)
        return image_variable
    
    
    def get_example_params(list_index):
        """
            Gets used variables for almost all visualizations, like the image, model etc.
    
        Args:
            example_index (int): Image id to use from examples
    
        returns:
            original_image (numpy arr): Original image read from the file
            prep_img (numpy_arr): Processed image
            file_name_to_export (string): File name to export the visualizations
            pretrained_model(Pytorch model): Model to use for the operations
        """
        examples = ['../input_images/cat10.png', '../input_images/cat134.png', '../input_images/dog10014.png', '../input_images/panda1.png', '../input_images/tiger1.png']
        img_path = examples[list_index]
        file_name_to_export = img_path[img_path.rfind('/')+1:img_path.rfind('.')]
        original_image = Image.open(img_path).convert('RGB') # open as RGB format
        prep_img = preprocess(original_image)
        pretrained_model = models.alexnet(pretrained = True)
        return (original_image, prep_img, file_name_to_export, pretrained_model)
    
    
    def format_np_output(np_arr):
        """
            This is a (kind of) bandaid fix to streamline saving procedure.
            It converts all the outputs to the same format which is 3xWxH with using sucecssive if clauses.
            
        Args:
            im_as_arr (Numpy array): Matrix of shape 1xWxH or WxH or 3xWxH
        """
        if len(np_arr.shape) == 2:
            np_arr = np.expand_dims(np_arr, axis=0) # case 1: append one dimension
        if np_arr.shape[0] == 1:
            np_arr = np.repeat(np_arr, 3, axis=0) # case 2: 1xWxH --> 3xWxH
        if np_arr.shape[0] == 3:
            np_arr = np_arr.transpose(1, 2, 0) # case 3: WxHx3
        if np.max(np_arr) <= 1:
            np_arr = (np_arr * 255).astype(np.uint8) # case 4: if normalized then x255
        return np_arr
    
    
    def save_img(im_to_save, save_path):
        """
            Saves a numpy matrix or PIL image as an image
            
        Args:
            im_as_arr (Numpy array): Matrix of shape DxWxH
            path (str): Path to the image
        """
        if isinstance(im_to_save, np.ndarray):
            im_to_save = format_np_output(im_to_save)
            im_to_save = Image.fromarray(im_to_save)
        im_to_save.save(save_path)
        
        
    def apply_colormap_to_image(origin_img, activation_map, colormap_type):
        """
            Apply heatmap on image
            
        Args:
            org_img (PIL img): Original image
            activation_map (numpy arr): Activation map (grayscale) 0-255
            colormap_name (str): Name of the colormap
        """
        color_map = mpl_color_map.get_cmap(colormap_type) # get colormap of hsv format
        no_trans_heatmap = color_map(activation_map)
        
        heatmap = copy.deepcopy(no_trans_heatmap)
        heatmap[:, :, 3] = 0.4 # change alpha
        heatmap = Image.fromarray((heatmap * 255).astype(np.uint8)) # heatmap image
        no_trans_heatmap = Image.fromarray((no_trans_heatmap*255).astype(np.uint8)) # no_trans_heatmap image
        
        heatmap_on_image = Image.new("RGBA", origin_img.size)
        heatmap_on_image = Image.alpha_composite(heatmap_on_image, origin_img.convert("RGBA"))
        heatmap_on_image = Image.alpha_composite(heatmap_on_image, heatmap) # heatmap + original image
        return no_trans_heatmap, heatmap_on_image
        
        
    def save_class_activation_images(origin_img, activation_map, file_name):
        """
            Save cam activation map and activation map on the original image
    
        Args:
            org_img (PIL img): Original image
            activation_map (numpy arr): Activation map (grayscale) 0-255
            file_name (str): File name of the exported image
        """
        if not os.path.exists("../results"):
            os.makedirs("../results")
        heatmap, heatmap_on_image = apply_colormap_to_image(origin_img, activation_map, "hsv")
        heatmap_path = os.path.join("../results", file_name + "heatmap.png")
        save_img(heatmap, heatmap_path)
        heatmap_on_image_path = os.path.join("../results", file_name + "heatmap_on_image.png")
        save_img(heatmap_on_image, heatmap_on_image_path)
        activation_path = os.path.join("../results", file_name + "activation_map.png")
        save_img(activation_map, activation_path)
    
    
    class Camextractor():
        """
            Class activation map extractor: to extract the feature at target layer
        """
        
        def __init__(self, model, target_layer):
            self.model = model
            self.target_layer = int(target_layer)
            self.gradient = None
            
        def save_gradient(self, grad):
            self.gradient = grad
            
        def conv_output(self, x):
            # forward pass and save conv result at target layer
            conv_out = None
            for layer_index, layer in self.model.features._modules.items():
                print("layer_index:", layer_index, "layer:", layer)
                x = layer(x) # forward for layer at layer_index
                if int(layer_index) == self.target_layer:
                    x.register_hook(self.save_gradient) # register hook and save gradients
                    conv_out = x
            return conv_out, x
        
        def forward_pass(self, x):
            # forward pass for the whole model
            conv_out, x = self.conv_output(x)
            x = x.view(x.size(0), -1) # flatten
            x = self.model.classifier(x) # classifier and if softmax added behind, then output probability of each class
            return conv_out, x
        
    class Layercam():
        """
            Produces class activation map using LayerCam method
        """
        
        def __init__(self, model, target_layer):
            
            self.model = model
            self.model.eval() # evaluation patten, not to activate BatchNorm and Dropout
            self.target_layer = int(target_layer)
            self.extractor = Camextractor(self.model, self.target_layer)
            
        def generate_cam(self, input_image):
            
            conv_out, model_out = self.extractor.forward_pass(input_image) # forward pass and save conv result at target layer
            target_class = np.argmax(model_out.data.numpy()) # classify and get the result with maximum probability
            one_hot_out = torch.FloatTensor(1, model_out.size()[-1]).zero_()
            one_hot_out[0][target_class] = 1 # target for back propagation
            self.model.features.zero_grad()
            self.model.classifier.zero_grad() # zero gradient
            model_out.backward(gradient = one_hot_out, retain_graph = True)
            target_out = conv_out.data.numpy()[0] # target layer output
            weight = self.extractor.gradient.data.numpy()[0] # weight for gradient
            weight[weight < 0] = 0 # relu
            cam = np.sum(weight * target_out, axis=0) # element multiply between weight and target layer output, then sum
            cam = (cam - np.min(cam)) / (np.max(cam) - np.min(cam)) # normalize cam to [0, 1]
            cam = np.uint8(cam * 255) # [0, 255]
            cam = np.uint8(Image.fromarray(cam).resize((input_image.shape[2], input_image.shape[3]), Image.ANTIALIAS)) / 255
            return cam
        
        
    if __name__ == "__main__":
        
        target_example = 4  # Tiger '../input_images/tiger1.png'
        (original_image, prep_img, file_name_to_export, pretrained_model) = get_example_params(target_example)
        layercam = Layercam(pretrained_model, target_layer=9)
        cam = layercam.generate_cam(prep_img)
        save_class_activation_images(original_image, cam, file_name_to_export)
        print('Layer cam completed')
    
    tiger1heatmap_on_image.png
    tiger1heatmap.png
    tiger1activation_map.png
    tiger1.png
    图一到图四分别为:热力图+原图、热力图、cam、原图。
    这里推荐:
    https://github.com/utkuozbulak/pytorch-cnn-visualizations
    本篇是根据该github上的layercam方法魔改的,也就是把常用的函数封装到了一个文件里,并且不需要对target class的预测,而是根据输入图片自行调用训练好的alexnet进行预测,取预测概率最大的类别作为输出,而且可以随意调用本地的图片进行预测,该本地图片最好来自于ImageNet且resize为224x224的。imageresize的代码很简单,调用Image库几行代码即可此处不再粘贴。

    相关文章

      网友评论

        本文标题:200行代码实现CNN卷积结果的可视化

        本文链接:https://www.haomeiwen.com/subject/xprnortx.html