IOS-Block

作者: 浪的出名 | 来源:发表于2020-11-17 21:04 被阅读0次

    Block初探

    blcok的分类

    • 不同关键字修饰的变量autostatic
      在OC中有个默认的关键字auto,在我们创建局部变量的时候,会默认在局部变量前加上auto关键字进行修饰。auto关键字的含义就是它所修饰的变量会自动释放,也表示着它所修饰的变量会存放到栈空间,系统会自动对其进行释放。
    • __NSGlobalBlock__全局block,block没有访问外部变量,访问全局的变量,访问静态变量的block都是全局blcok
        static int a = 10;
        static NSString *s1 = @"str1";
        void (^globalBlock1)(void) = ^{
            NSLog(@"-----global block");
        };
        void (^globalBlock2)(void) = ^{
            NSLog(@"-----global block:%d",a);
        };
        void (^globalBlock3)(void) = ^{
            NSLog(@"-----global block:%@",s1);
        };
    // 打印结果如下
    <__NSGlobalBlock__: 0x1043a7068>
    <__NSGlobalBlock__: 0x1043a7088>
    <__NSGlobalBlock__: 0x1043a70a8>
    
    • __NSStackBlock__栈block,block访问外部auto变量就是栈block
        auto int b = 11;
        auto NSString *s = @"str";
        NSLog(@"%@%@",^{
            NSLog(@"name is:%d",b);
        },^{
            NSLog(@"name is:%@",s);
        });
    // 打印结果如下
    <__NSStackBlock__: 0x7ffeeb858c40>
    <__NSStackBlock__: 0x7ffeeb858c18>
    
    • __NSMallocBlock__堆block,栈block进行copy操作之后就变为堆block
        auto int b = 11;
        self.block = ^{
            NSLog(@"name is:%d",b);
        };
        NSLog(@"%@----%@",self.block,
              [^{
                NSLog(@"name is:%d",b);
                } copy]
              );
    // 打印结果如下
    <__NSMallocBlock__: 0x60000096af40>
    ----<__NSMallocBlock__: 0x60000096a4f0>
    

    在ARC环境下,编译器会根据情况自动将栈上的block复制到堆上,比如以下情况
    block作为函数返回值时
    将block赋值给__strong指针时
    block作为Cocoa API中方法名含有usingBlock的方法参数时
    block作为GCD API的方法参数时

    block的变量捕获(capture)

    • 我们创建一个带外部参数的block,查看对应的结构
    int c = 15;
    int main(int argc, const char * argv[]) {
        @autoreleasepool {
            auto int a = 10;
            static int b = 20;
            NSObject *obj = [[NSObject alloc] init];
            void(^testBlock)(void) = ^{
                NSLog(@"------- block---arg1:%d---arg2:%d---arg3:%d---arg4:%@",a,b,c,obj);
            };
        }
        return 0;
    }
    
    • 查看有外部参数block的cpp文件,找到main函数,去掉一些强转代码,得到下面代码
    int main(int argc, const char * argv[]) {
        /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 
    
            auto int a = 10;
            static int b = 20;
            NSObject *obj = objc_msgSend)((id)(objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("alloc")), sel_registerName("init"));
            void(*testBlock)(void) = (&__main_block_impl_0(__main_block_func_0,                                                  &__main_block_desc_0_DATA,                                                                          a,                                                                         &b,                                                                        obj,                                                                570425344));
        }
        return 0;
    }
    
    • 查看__main_block_impl_0的结构
    struct __main_block_impl_0 {
      struct __block_impl impl;
      struct __main_block_desc_0* Desc;
      int a;
      int *b;
      NSObject *obj;
      __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _a, int *_b, NSObject *_obj, int flags=0) : a(_a), b(_b), obj(_obj) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
      }
    };
    ---------------------------------------------------------------------------
    struct __block_impl {
      void *isa;  //isa指针,可以看出Block其实就是一个OC对象
      int Flags;
      int Reserved;
      void *FuncPtr;  //函数内存地址
    };
    ---------------------------------------------------------------------------
    static struct __main_block_desc_0 {
      size_t reserved;
      size_t Block_size;
      void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
      void (*dispose)(struct __main_block_impl_0*);
    } __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
    
    • 为了保证block内部能够正常访问外部的变量,block有个变量捕获机制。
      • auto变量的捕获
        通过对上述代码的观察发现auto变量auto int a在struct __main_block_impl_0是以int a;的方式保存的。
      • static变量的捕获
        static变量static int b在struct __main_block_impl_0是以int *b;的方式保存的。
      • 对象类型的auto变量
        当block内部访问了对象类型的auto变量时
        如果block是在栈上,将不会对auto变量产生强引用
        如果block被拷贝到堆上
        会调用block内部的copy函数
        copy函数内部会调用_Block_object_assign函数
        _Block_object_assign函数会根据auto变量的修饰符(__strong、 __weak、__unsafe_unretained)做出相应的操作,形成强引用(retain)或者弱引用
        如果block从堆上移除
        会调用block内部的dispose函数
        dispose函数内部会调用_Block_object_dispose函数
        _Block_object_dispose函数会自动释放引用的auto变量(release)
    • block类型的总结
    block的类型 block执行的操作
    _NSGlobalBlock_ 没有访问auto类型的变量
    _NSStackBlock_ 访问了auto类型的变量
    _NSMallocBlock_ _NSStackBlock_类型的block执行了copy操作

    __block修饰的变量

    • 当变量被__block修饰之后,在block结构体里面就不再是简单的值传递了,而是会将变量包装成一个__Block_byref_obj_0结构体,其结构如下
    struct __Block_byref_obj_0 {
      void *__isa;
    __Block_byref_obj_0 *__forwarding;
     int __flags;
     int __size;
     void (*__Block_byref_id_object_copy)(void*, void*);
     void (*__Block_byref_id_object_dispose)(void*);
     NSObject *obj;
    };
    
    // 对应的值
     __Block_byref_obj_0 obj = {(void*)0,
    (__Block_byref_obj_0 *)&obj,
     33554432, sizeof(__Block_byref_obj_0), __Block_byref_id_object_copy_131, __Block_byref_id_object_dispose_131,
     ((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("new"))};
    
    static void __Block_byref_id_object_copy_131(void *dst, void *src) {
     _Block_object_assign((char*)dst + 40, *(void * *) ((char*)src + 40), 131);
    }
    static void __Block_byref_id_object_dispose_131(void *src) {
     _Block_object_dispose(*(void * *) ((char*)src + 40), 131);
    }
    

    Block的循环引用

    • 在使用block的时候会遇到以下循环引用的问题,vc强引用着block,block强引用着vc,导致vc无法释放,不会执行dealloc。
    typedef void(^block)(void);
    @interface ViewController ()
    @property (nonatomic, strong) NSString *name;
    @property (nonatomic, strong) block block;
    @end
    
    @implementation ViewController
    - (void)viewDidLoad {
        [super viewDidLoad];
        self.name = @"xq";
        self.block = ^{
            NSLog(@"name is:%@",self.name);
        };
        self.block();
    }
    - (void)dealloc
    {
        NSLog(@"%s",__func__);
    }
    @end
    
    • 知道产生了循环引用的原因,就可以通过一个弱引用的weakSelf指向self


      image.png
    • 所以我们只需要将上面的代码修改成如下,dealloc就会正常执行了
        __weak typeof(self) weakSelf = self;
        self.block = ^{
            NSLog(@"name is:%@",weakSelf.name);
        };
        // dealloc执行打印
        -[ViewController dealloc]
    
    • 但是我们将代码改成下面这样,又会出现问题了,由于vc已经释放了,所以再调用.name就为空
    self.block = ^{
            dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
                NSLog(@"name is:%@",weakSelf.name);
            });
        };
    // 打印结果
    -[ViewController dealloc]
     name is:(null)
    
    • 所以我们需要在block里面对weakSelf再进行一次强引用,这就是所谓weak-strong dance
    self.block = ^{
            __strong typeof(weakSelf) strongSelf = weakSelf;//在arc中默认是strong的所以__strong是可以省略的
            dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
                NSLog(@"name is:%@",strongSelf.name);
            });
        };
    // 打印结果
    name is:xq
    -[ViewController dealloc]
    
    • 其他解决循环引用的方法
    • __block,这种方法的缺点是需要依赖block的调用,如果block不调用还是会有循环引用
        __block ViewController *vc = self;
        self.block = ^{
            dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
                NSLog(@"name is:%@",vc.name);
                vc = nil;
            });
        };
        self.block();
    
    • 传值,通过将self作为参数传递给block
    typedef void(^block)(ViewController *);
    self.block = ^(ViewController *vc){
            dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
                NSLog(@"name is:%@",vc.name);
            });
        };
     self.block(self);
    

    Block的底层原理

    clang研究blcok

    • 创建一个block,通过clang来观察下它的底层实现
        NSString *name = @"xq";
        void (^block)(void) = ^{
            NSLog(@"name is %@",name);
        };
        block();
    
    • clang后得到的代码如下
    void (*block)(void) = ((void (*)())&__ViewController__viewDidLoad_block_impl_0((void *)__ViewController__viewDidLoad_block_func_0, &__ViewController__viewDidLoad_block_desc_0_DATA, name, 570425344));
    ((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
    //去掉一些强转
    block = __ViewController__viewDidLoad_block_impl_0(__ViewController__viewDidLoad_block_func_0, __ViewController__viewDidLoad_block_desc_0_DATA,name, 570425344)
    block-> FuncPtr(block)
    
    • __ViewController__viewDidLoad_block_impl_0的结构
      struct __ViewController__viewDidLoad_block_impl_0 {
      struct __block_impl impl;
      struct __ViewController__viewDidLoad_block_desc_0* Desc;
      NSString *name;
      // 结构体的构造函数
      __ViewController__viewDidLoad_block_impl_0(void *fp, struct __ViewController__viewDidLoad_block_desc_0 *desc, NSString *_name, int flags=0) : name(_name) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
      }
    };
    
    • __block_impl的结构
    struct __block_impl {
      void *isa;
      int Flags;
      int Reserved;
      void *FuncPtr;
    };
    
    • __ViewController__viewDidLoad_block_desc_0的结构
    static struct __ViewController__viewDidLoad_block_desc_0 {
      size_t reserved;
      size_t Block_size;
      void (*copy)(struct __ViewController__viewDidLoad_block_impl_0*, struct __ViewController__viewDidLoad_block_impl_0*);
      void (*dispose)(struct __ViewController__viewDidLoad_block_impl_0*);
    } __ViewController__viewDidLoad_block_desc_0_DATA = { 0, sizeof(struct __ViewController__viewDidLoad_block_impl_0), __ViewController__viewDidLoad_block_copy_0, __ViewController__viewDidLoad_block_dispose_0};
    // 因为我们捕获的变量是对象,所以需要对它的内存进行处理
    static void __ViewController__viewDidLoad_block_copy_0(struct __ViewController__viewDidLoad_block_impl_0*dst, struct __ViewController__viewDidLoad_block_impl_0*src) {_Block_object_assign((void*)&dst->name, (void*)src->name, 3/*BLOCK_FIELD_IS_OBJECT*/);}
    
    static void __ViewController__viewDidLoad_block_dispose_0(struct __ViewController__viewDidLoad_block_impl_0*src) {_Block_object_dispose((void*)src->name, 3/*BLOCK_FIELD_IS_OBJECT*/);}
    
    • __ViewController__viewDidLoad_block_func_0就是block要执行的任务
    static void __ViewController__viewDidLoad_block_func_0(struct __ViewController__viewDidLoad_block_impl_0 *__cself) {
      NSString *name = __cself->name; // bound by copy
    
            NSLog((NSString *)&__NSConstantStringImpl__var_folders_13_ztl_wzln5357kbjwzx2pgrrw0000gp_T_ViewController_d580cd_mi_1,name);
        }
    
    • 总结 可以看到block底层是一个结构体,也是一个对象,通过构造函数将block的任务当做函数fp传递给结构体,再通过使用fp()调用,这也是外界调用block要用block()的原因,其本质就是函数的执行,所以block又叫匿名函数,对外界变量的捕获,当变量没有用block修饰的时候,会在block内部生成一个同名的变量并将外界变量的值传递进来,而当变量被__block修饰的时候,发现对象会被包装成__Block_byref_xxx_0的结构体,根据传入变量的类型会有不同的结构
    struct __Block_byref_obj_0 {
      void *__isa;
    __Block_byref_obj_0 *__forwarding;
     int __flags;
     int __size;
    //对象类型会有这两个方法
     void (*__Block_byref_id_object_copy)(void*, void*);
     void (*__Block_byref_id_object_dispose)(void*);
     NSObject *obj;
    };
    

    汇编研究block的底层实现

    • 在blcok的开始处打下断点


      image.png
    • 进到汇编调试界面


      image.png
    • 加符号断点objc_retainBlock
      image.png
    • 进到符号断点


      image.png
    • 继续往下执行


      image.png
    • 最终会进入到libsystem_blocks.dylib_Block_copy
      image.png
    • 通过打印寄存器我们也可以发现执行完_Block_copy之后,block由栈block转换为堆block
    • 所以我们要研究block就要研究libsystem_blocks.dylib,获取它的源码

    libsystem_blocks.dylib

    • 通过观察源码发现,block的底层其实是一个Block_layout的结构体其内部结构为
    struct Block_layout {
        void *isa;
        volatile int32_t flags; // contains ref count
        int32_t reserved;
        BlockInvokeFunction invoke;
        struct Block_descriptor_1 *descriptor;
        // imported variables
    };
    
    • isa:指向block的类型
    • flags:标识符,按bit位表示一些block的附加信息,类似于isa中的位域,其中flags的种类有以下几种,我们重点关注BLOCK_HAS_COPY_DISPOSE 和 BLOCK_HAS_SIGNATURE。 BLOCK_HAS_COPY_DISPOSE 决定是否有 Block_descriptor_2。BLOCK_HAS_SIGNATURE 决定是否有 Block_descriptor_3
    // Values for Block_layout->flags to describe block objects
    enum {
        BLOCK_DEALLOCATING =      (0x0001),  // runtime
        BLOCK_REFCOUNT_MASK =     (0xfffe),  // runtime
        BLOCK_NEEDS_FREE =        (1 << 24), // runtime
        BLOCK_HAS_COPY_DISPOSE =  (1 << 25), // compiler
        BLOCK_HAS_CTOR =          (1 << 26), // compiler: helpers have C++ code
        BLOCK_IS_GC =             (1 << 27), // runtime
        BLOCK_IS_GLOBAL =         (1 << 28), // compiler
        BLOCK_USE_STRET =         (1 << 29), // compiler: undefined if !BLOCK_HAS_SIGNATURE
        BLOCK_HAS_SIGNATURE  =    (1 << 30), // compiler
        BLOCK_HAS_EXTENDED_LAYOUT=(1 << 31)  // compiler
    };
    
    • reserved:保留信息
    • invoke:是一个函数指针,指向block中的代码
    • descriptor:block的附加信息,比如保留变量数、block的大小、copy或dispose的辅助函数指针,block的签名。有三类
      Block_descriptor_1是必选的
      Block_descriptor_2 和 Block_descriptor_3都是可选的
    #define BLOCK_DESCRIPTOR_1 1
    struct Block_descriptor_1 {
        uintptr_t reserved;
        uintptr_t size;
    };
    
    #define BLOCK_DESCRIPTOR_2 1
    struct Block_descriptor_2 {
        // requires BLOCK_HAS_COPY_DISPOSE
        BlockCopyFunction copy;
        BlockDisposeFunction dispose;
    };
    
    #define BLOCK_DESCRIPTOR_3 1
    struct Block_descriptor_3 {
        // requires BLOCK_HAS_SIGNATURE
        const char *signature;
        const char *layout;     // contents depend on BLOCK_HAS_EXTENDED_LAYOUT
    };
    
    • 上面块描述器的构造函数如下,其中Block_descriptor_2和Block_descriptor_3都是通过Block_descriptor_1的地址内存平移得到的
    #if 0
    static struct Block_descriptor_1 * _Block_descriptor_1(struct Block_layout *aBlock)
    {
        return aBlock->descriptor;
    }
    #endif
    
    // Block 的描述 : copy 和 dispose 函数
    static struct Block_descriptor_2 * _Block_descriptor_2(struct Block_layout *aBlock)
    {
        if (! (aBlock->flags & BLOCK_HAS_COPY_DISPOSE)) return NULL;
        uint8_t *desc = (uint8_t *)aBlock->descriptor;
        desc += sizeof(struct Block_descriptor_1);
        return (struct Block_descriptor_2 *)desc;
    }
    
    //  Block 的描述 : 签名相关
    static struct Block_descriptor_3 * _Block_descriptor_3(struct Block_layout *aBlock)
    {
        if (! (aBlock->flags & BLOCK_HAS_SIGNATURE)) return NULL;
        uint8_t *desc = (uint8_t *)aBlock->descriptor;
        desc += sizeof(struct Block_descriptor_1);
        if (aBlock->flags & BLOCK_HAS_COPY_DISPOSE) {
            desc += sizeof(struct Block_descriptor_2);
        }
        return (struct Block_descriptor_3 *)desc;
    }
    
    • _Block_copy的实现
    void *_Block_copy(const void *arg) {
        struct Block_layout *aBlock;
    
        if (!arg) return NULL;
        
        // The following would be better done as a switch statement
        aBlock = (struct Block_layout *)arg;
        if (aBlock->flags & BLOCK_NEEDS_FREE) {
            // latches on high
            latching_incr_int(&aBlock->flags);
            return aBlock;
        }
        else if (aBlock->flags & BLOCK_IS_GLOBAL) {
            return aBlock;
        }
        else {
            // Its a stack block.  Make a copy.
            struct Block_layout *result =
                (struct Block_layout *)malloc(aBlock->descriptor->size);
            if (!result) return NULL;
            memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
    #if __has_feature(ptrauth_calls)
            // Resign the invoke pointer as it uses address authentication.
            result->invoke = aBlock->invoke;
    #endif
            // reset refcount
            result->flags &= ~(BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING);    // XXX not needed
            result->flags |= BLOCK_NEEDS_FREE | 2;  // logical refcount 1
            _Block_call_copy_helper(result, aBlock);
            // Set isa last so memory analysis tools see a fully-initialized object.
            result->isa = _NSConcreteMallocBlock;
            return result;
        }
    }
    
    • _Block_copy会对外界传入的blcok先做判断,如果需要释放或者是全局block直接返回block,需要释放的会对flag做一些处理,如果是栈block就会在堆中开辟一块空间,将传进来的blcok拷贝到开辟的空间中并把isa指向_NSConcreteMallocBlock_Block_call_copy_helper方法中对传递进来的参数做了一些处理
    static void _Block_call_copy_helper(void *result, struct Block_layout *aBlock)
    {
        struct Block_descriptor_2 *desc = _Block_descriptor_2(aBlock);
        if (!desc) return;
    
        (*desc->copy)(result, aBlock); // do fixup
    }
    
    • 如果传入的参数不是对象类型的也就没有copy和dispose函数的就直接返回,否则就进入desc->copy方法,也就是外界传递过来的__Block_byref_id_object_copy_xx然后再调用_Block_object_assign对外界传递过来的参数处理
    • 外界传递过来的参数一般分为以下几种类型,我们重点研究BLOCK_FIELD_IS_OBJECTBLOCK_FIELD_IS_BYREF
    //  Block 捕获的外界变量的种类
    // Runtime support functions used by compiler when generating copy/dispose helpers
    
    // Values for _Block_object_assign() and _Block_object_dispose() parameters
    enum {
        // see function implementation for a more complete description of these fields and combinations
        BLOCK_FIELD_IS_OBJECT   =  3,  // id, NSObject, __attribute__((NSObject)), block, ...
        BLOCK_FIELD_IS_BLOCK    =  7,  // a block variable
        BLOCK_FIELD_IS_BYREF    =  8,  // the on stack structure holding the __block variable
        BLOCK_FIELD_IS_WEAK     = 16,  // declared __weak, only used in byref copy helpers
        BLOCK_BYREF_CALLER      = 128, // called from __block (byref) copy/dispose support routines.
    };
    
    • _Block_object_assign的实现
    //  Block 捕获外界变量的操作
    void _Block_object_assign(void *destArg, const void *object, const int flags) {
        const void **dest = (const void **)destArg;
        switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
          case BLOCK_FIELD_IS_OBJECT:
            /*******
            id object = ...;
            [^{ object; } copy];
            ********/
    
            _Block_retain_object(object);
            *dest = object;
            break;
    
          case BLOCK_FIELD_IS_BLOCK:
            /*******
            void (^object)(void) = ...;
            [^{ object; } copy];
            ********/
    
            *dest = _Block_copy(object);
            break;
        
          case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
          case BLOCK_FIELD_IS_BYREF:
            /*******
             // copy the onstack __block container to the heap
             // Note this __weak is old GC-weak/MRC-unretained.
             // ARC-style __weak is handled by the copy helper directly.
             __block ... x;
             __weak __block ... x;
             [^{ x; } copy];
             ********/
    
            *dest = _Block_byref_copy(object);
            break;
            
          case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
          case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
            /*******
             // copy the actual field held in the __block container
             // Note this is MRC unretained __block only. 
             // ARC retained __block is handled by the copy helper directly.
             __block id object;
             __block void (^object)(void);
             [^{ object; } copy];
             ********/
    
            *dest = object;
            break;
    
          case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
          case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK  | BLOCK_FIELD_IS_WEAK:
            /*******
             // copy the actual field held in the __block container
             // Note this __weak is old GC-weak/MRC-unretained.
             // ARC-style __weak is handled by the copy helper directly.
             __weak __block id object;
             __weak __block void (^object)(void);
             [^{ object; } copy];
             ********/
    
            *dest = object;
            break;
    
          default:
            break;
        }
    }
    
    • 如果是普通对象,则交给系统arc处理,并拷贝对象指针,即引用计数+1,所以外界变量不能释放
    • 如果是block类型的变量,则通过_Block_copy操作,将block从栈区拷贝到堆区
    • 如果是__block修饰的变量,调用_Block_byref_copy函数 进行内存拷贝以及常规处理
    static struct Block_byref *_Block_byref_copy(const void *arg) {
        struct Block_byref *src = (struct Block_byref *)arg;
    
        if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
            // src points to stack
            struct Block_byref *copy = (struct Block_byref *)malloc(src->size);
            copy->isa = NULL;
            // byref value 4 is logical refcount of 2: one for caller, one for stack
            copy->flags = src->flags | BLOCK_BYREF_NEEDS_FREE | 4;
            copy->forwarding = copy; // patch heap copy to point to itself
            src->forwarding = copy;  // patch stack to point to heap copy
            copy->size = src->size;
    
            if (src->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
                // Trust copy helper to copy everything of interest
                // If more than one field shows up in a byref block this is wrong XXX
                struct Block_byref_2 *src2 = (struct Block_byref_2 *)(src+1);
                struct Block_byref_2 *copy2 = (struct Block_byref_2 *)(copy+1);
                copy2->byref_keep = src2->byref_keep;
                copy2->byref_destroy = src2->byref_destroy;
    
                if (src->flags & BLOCK_BYREF_LAYOUT_EXTENDED) {
                    struct Block_byref_3 *src3 = (struct Block_byref_3 *)(src2+1);
                    struct Block_byref_3 *copy3 = (struct Block_byref_3*)(copy2+1);
                    copy3->layout = src3->layout;
                }
    
                (*src2->byref_keep)(copy, src);
            }
            else {
                // Bitwise copy.
                // This copy includes Block_byref_3, if any.
                memmove(copy+1, src+1, src->size - sizeof(*src));
            }
        }
        // already copied to heap
        else if ((src->forwarding->flags & BLOCK_BYREF_NEEDS_FREE) == BLOCK_BYREF_NEEDS_FREE) {
            latching_incr_int(&src->forwarding->flags);
        }
        
        return src->forwarding;
    }
    
    • 内部对Block_byref进行处理,如果已经在堆中对他递增并返回,如果没有将它拷贝到堆中并更新指针指向它

    • _Block_object_dispose就是对对象的销毁

    void _Block_object_dispose(const void *object, const int flags) {
        switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
          case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
          case BLOCK_FIELD_IS_BYREF:
            // get rid of the __block data structure held in a Block
            _Block_byref_release(object);
            break;
          case BLOCK_FIELD_IS_BLOCK:
            _Block_release(object);
            break;
          case BLOCK_FIELD_IS_OBJECT:
            _Block_release_object(object);
            break;
          case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
          case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
          case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
          case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK  | BLOCK_FIELD_IS_WEAK:
            break;
          default:
            break;
        }
    }
    
    • _Block_byref_release的实现
    static void _Block_byref_release(const void *arg) {
        struct Block_byref *byref = (struct Block_byref *)arg;
    
        // dereference the forwarding pointer since the compiler isn't doing this anymore (ever?)
        byref = byref->forwarding;
        
        if (byref->flags & BLOCK_BYREF_NEEDS_FREE) {
            int32_t refcount = byref->flags & BLOCK_REFCOUNT_MASK;
            os_assert(refcount);
            if (latching_decr_int_should_deallocate(&byref->flags)) {
                if (byref->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
                    struct Block_byref_2 *byref2 = (struct Block_byref_2 *)(byref+1);
                    (*byref2->byref_destroy)(byref);
                }
                free(byref);
            }
        }
    }
    

    相关文章

      网友评论

          本文标题:IOS-Block

          本文链接:https://www.haomeiwen.com/subject/xprvbktx.html