美文网首页程序员Android三方框架
OkHttp3实现原理分析(二)

OkHttp3实现原理分析(二)

作者: 木有粗面_9602 | 来源:发表于2018-01-18 19:46 被阅读2451次

    概述

    前言:前一节https://www.jianshu.com/p/f3f228d3598c,总结了一下OkHttp3的简单使用教程。在项目中使用了这个网络框架,在看完基本的源码之后,还是想总结一下OkHttp的实现流程。在学习框架的过程中,从使用方法出发,首先是怎么使用,其次是我们使用的功能在内部是如何实现的,实现方案上有什么技巧,有什么范式。

    OkHttp的整体流程

    整个流程是:通过OkHttpClient将构建的Request转换为Call,然后在RealCall中进行异步或同步任务,最后通过一些的拦截器interceptor发出网络请求和得到返回的response。总体流程用下面的图表示

    Okhttp3整体流程.png

    拆组件

    在整体流程中,主要的组件是OkHttpClient,其次有Call,RealCall,Disptcher,各种InterceptorsRequest和Response组件。Request和Response已经在上一篇的对其结构源码进行了分析。

    1. OkHttpClient对象:网络请求的主要操控者

    创建OkHttpClient对象

    //通过Builder构造OkHttpClient
     OkHttpClient.Builder builder = new OkHttpClient.Builder()
                    .connectTimeout(20, TimeUnit.SECONDS)
                    .writeTimeout(20, TimeUnit.SECONDS)
                    .readTimeout(20, TimeUnit.SECONDS);
            return builder.build();
    

    OkHttpClient.Builder类有很多变量,OkHttpClient有很多的成员变量:

    final Dispatcher dispatcher;  //重要:分发器,分发执行和关闭由request构成的Call
        final Proxy proxy;  //代理
        final List<Protocol> protocols; //协议
        final List<ConnectionSpec> connectionSpecs; //传输层版本和连接协议
        final List<Interceptor> interceptors; //重要:拦截器
        final List<Interceptor> networkInterceptors; //网络拦截器
        final ProxySelector proxySelector; //代理选择
        final CookieJar cookieJar; //cookie
        final Cache cache; //缓存
        final InternalCache internalCache;  //内部缓存
        final SocketFactory socketFactory;  //socket 工厂
        final SSLSocketFactory sslSocketFactory; //安全套接层socket 工厂,用于HTTPS
        final CertificateChainCleaner certificateChainCleaner; // 验证确认响应证书 适用 HTTPS 请求连接的主机名。
        final HostnameVerifier hostnameVerifier;    //  主机名字确认
        final CertificatePinner certificatePinner;  //  证书链
        final Authenticator proxyAuthenticator;     //代理身份验证
        final Authenticator authenticator;      // 本地身份验证
        final ConnectionPool connectionPool;    //连接池,复用连接
        final Dns dns;  //域名
        final boolean followSslRedirects;  //安全套接层重定向
        final boolean followRedirects;  //本地重定向
        final boolean retryOnConnectionFailure; //重试连接失败
        final int connectTimeout;    //连接超时
        final int readTimeout; //read 超时
        final int writeTimeout; //write 超时
    

    OkHttpClient完成整个请求设计到很多参数,都可以通过OkHttpClient.builder使用创建者模式构建。事实上,你能够通过它来设置改变一些参数,因为他是通过建造者模式实现的,因此你可以通过builder()来设置。如果不进行设置,在Builder中就会使用默认的设置:

     public Builder() {
          dispatcher = new Dispatcher();
          protocols = DEFAULT_PROTOCOLS;
          connectionSpecs = DEFAULT_CONNECTION_SPECS;
          eventListenerFactory = EventListener.factory(EventListener.NONE);
          proxySelector = ProxySelector.getDefault();
          cookieJar = CookieJar.NO_COOKIES;
          socketFactory = SocketFactory.getDefault();
          hostnameVerifier = OkHostnameVerifier.INSTANCE;
          certificatePinner = CertificatePinner.DEFAULT;
          proxyAuthenticator = Authenticator.NONE;
          authenticator = Authenticator.NONE;
          connectionPool = new ConnectionPool();
          dns = Dns.SYSTEM;
          followSslRedirects = true;
          followRedirects = true;
          retryOnConnectionFailure = true;
          connectTimeout = 10_000;
          readTimeout = 10_000;
          writeTimeout = 10_000;
          pingInterval = 0;
        }
    

    2,RealCall:真正的请求执行者

    2.1之前文章中的Http发起同步请求的代码:

     Request request = new Request.Builder()
          .url(url)
          .build();
      Response response = client.newCall(request).execute();
    

    client.newCall(request).execute()创建了Call执行了网络请求获得response响应。重点看一看这个执行的请求者的内部是什么鬼。

    /**
       * Prepares the {@code request} to be executed at some point in the future.
       */
    //OkHttpClient中的方法,可以看出RealCall的真面目
      @Override public Call newCall(Request request) {
        return RealCall.newRealCall(this, request, false /* for web socket */);
      }
    

    RealCall的构造函数:

     private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
        //client请求
        this.client = client;
        //我们构造的请求
        this.originalRequest = originalRequest;
        this.forWebSocket = forWebSocket;
        //负责重试和重定向拦截器
        this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
      }
    

    Call对象其实是一个接口,Call的源码:

    
    public interface Call extends Cloneable {
      /** Returns the original request that initiated this call. */
      //用于返回Call对象中的request对象
      Request request();
      //用于执行同步请求的方法
      Response execute() throws IOException;
     //用于执行异步请求的方法,通过responseCallback回调结果
      void enqueue(Callback responseCallback);
    
      /** Cancels the request, if possible. Requests that are already complete cannot be canceled. */
      //取消这个call,当call被取消时请求不在执行,抛出异常。可以用于终止请求
      void cancel();
    
      /**
       * Returns true if this call has been either {@linkplain #execute() executed} or {@linkplain
       * #enqueue(Callback) enqueued}. It is an error to execute a call more than once.
       */
     //是否被执行
      boolean isExecuted();
     //是否被取消
      boolean isCanceled();
    
      /**
       * Create a new, identical call to this one which can be enqueued or executed even if this call
       * has already been.
       */
      Call clone();
    
      interface Factory {
        Call newCall(Request request);
      }
    }
    

    Realcall是Call的实现类。显然重要的执行任务就交个RealCall对象execute()和enqueue(Callback responseCallback)方法了。
    我们首先看 RealCall#execute

     @Override public Response execute() throws IOException {
        //(1)
        synchronized (this) {
          if (executed) throw new IllegalStateException("Already Executed");
          executed = true;
        }
        captureCallStackTrace();
        //事件监听器调
        eventListener.callStart(this);
        try {
          //(2)
          client.dispatcher().executed(this);
          //(3)
          Response result = getResponseWithInterceptorChain();
          if (result == null) throw new IOException("Canceled");
          return result;
        } catch (IOException e) {
          eventListener.callFailed(this, e);
          throw e;
        } finally {
          //(4)
          client.dispatcher().finished(this);
        }
      }
    

    (1)检查这个 call 是否已经被执行了,每个 call 只能被执行一次,如果想要一个完全一样的 call,可以利用 call#clone 方法进行克隆。
    (2)利用 client.dispatcher().executed(this) 来进行实际执行,分发器负责分发。dispatcher 是刚才看到的 OkHttpClient.Builder 的成员之一,它的文档说自己是异步 HTTP 请求的执行策略,现在看来,同步请求它也有掺和。
    (3)调用 getResponseWithInterceptorChain() 函数获取 HTTP 返回结果,从函数名可以看出,这一步还会进行一系列“拦截”操作。
    (4)最后还要通知 dispatcher 自己已经执行完毕

    dispatcher 这里我们不过度关注,在同步执行的流程中,涉及到 dispatcher 的内容只不过是告知它我们的执行状态,比如开始执行了(调用 executed),比如执行完毕了(调用 finished)在异步执行流程中它会有更多的参与。

    Dispatcher的源码主要在异步请求时参与多,这里有执行异步请求的线程池

    /**
     * Policy on when async requests are executed.
     *
     * <p>Each dispatcher uses an {@link ExecutorService} to run calls internally. If you supply your
     * own executor, it should be able to run {@linkplain #getMaxRequests the configured maximum} number
     * of calls concurrently.
     */
    //请求分发器,**主要在异步请求时参与多,这里有执行异步请求的线程池**
    public final class Dispatcher {
      //最大的请求数量
      private int maxRequests = 64;
      //每个主机的请求数量,默认在摸个主机上同时请求5个
      private int maxRequestsPerHost = 5;
      private @Nullable Runnable idleCallback;
    
      /** Executes calls. Created lazily. */
     //执行异步call时的线程池,就在这儿
      private @Nullable ExecutorService executorService;
    
      /** Ready async calls in the order they'll be run. */
     //即将被执行的异步call队列
      private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();
    
      /** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
     //正在运行的异步call,包括被取消的还没有完成的
      private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();
    
      /** Running synchronous calls. Includes canceled calls that haven't finished yet. */
     //正在运行的同步call。包括被取消的还没有完成的
      private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
     //可以执行自定义线程池,传进来
      public Dispatcher(ExecutorService executorService) {
        this.executorService = executorService;
      }
    
      public Dispatcher() {
      }
     //构造线程池
      public synchronized ExecutorService executorService() {
        if (executorService == null) {
          executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
              new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
        }
        return executorService;
      }
    
      /**
       * Set the maximum number of requests to execute concurrently. Above this requests queue in
       * memory, waiting for the running calls to complete.
       *
       * <p>If more than {@code maxRequests} requests are in flight when this is invoked, those requests
       * will remain in flight.
       */
      public synchronized void setMaxRequests(int maxRequests) {
        if (maxRequests < 1) {
          throw new IllegalArgumentException("max < 1: " + maxRequests);
        }
        this.maxRequests = maxRequests;
        promoteCalls();
      }
    
      public synchronized int getMaxRequests() {
        return maxRequests;
      }
    
      /**
       * Set the maximum number of requests for each host to execute concurrently. This limits requests
       * by the URL's host name. Note that concurrent requests to a single IP address may still exceed
       * this limit: multiple hostnames may share an IP address or be routed through the same HTTP
       * proxy.
       *
       * <p>If more than {@code maxRequestsPerHost} requests are in flight when this is invoked, those
       * requests will remain in flight.
       */
      public synchronized void setMaxRequestsPerHost(int maxRequestsPerHost) {
        if (maxRequestsPerHost < 1) {
          throw new IllegalArgumentException("max < 1: " + maxRequestsPerHost);
        }
        this.maxRequestsPerHost = maxRequestsPerHost;
        promoteCalls();
      }
    
      public synchronized int getMaxRequestsPerHost() {
        return maxRequestsPerHost;
      }
    
      /**
       * Set a callback to be invoked each time the dispatcher becomes idle (when the number of running
       * calls returns to zero).
       *
       * <p>Note: The time at which a {@linkplain Call call} is considered idle is different depending
       * on whether it was run {@linkplain Call#enqueue(Callback) asynchronously} or
       * {@linkplain Call#execute() synchronously}. Asynchronous calls become idle after the
       * {@link Callback#onResponse onResponse} or {@link Callback#onFailure onFailure} callback has
       * returned. Synchronous calls become idle once {@link Call#execute() execute()} returns. This
       * means that if you are doing synchronous calls the network layer will not truly be idle until
       * every returned {@link Response} has been closed.
       */
      public synchronized void setIdleCallback(@Nullable Runnable idleCallback) {
        this.idleCallback = idleCallback;
      }
      //分发异步执行的call,是提交到线程池
      synchronized void enqueue(AsyncCall call) {
        if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
          runningAsyncCalls.add(call);
         //提交到线程此执行
          executorService().execute(call);
        } else {
          readyAsyncCalls.add(call);
        }
      }
    
      /**
       * Cancel all calls currently enqueued or executing. Includes calls executed both {@linkplain
       * Call#execute() synchronously} and {@linkplain Call#enqueue asynchronously}.
       */
      public synchronized void cancelAll() {
        for (AsyncCall call : readyAsyncCalls) {
          call.get().cancel();
        }
    
        for (AsyncCall call : runningAsyncCalls) {
          call.get().cancel();
        }
    
        for (RealCall call : runningSyncCalls) {
          call.cancel();
        }
      }
    
      private void promoteCalls() {
        if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
        if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
    
        for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
          AsyncCall call = i.next();
    
          if (runningCallsForHost(call) < maxRequestsPerHost) {
            i.remove();
            runningAsyncCalls.add(call);
            executorService().execute(call);
          }
    
          if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
        }
      }
    
      /** Returns the number of running calls that share a host with {@code call}. */
      private int runningCallsForHost(AsyncCall call) {
        int result = 0;
        for (AsyncCall c : runningAsyncCalls) {
          if (c.host().equals(call.host())) result++;
        }
        return result;
      }
    
      /** Used by {@code Call#execute} to signal it is in-flight. */
     //分发同步call,只加入到正在运行同步call的队列
      synchronized void executed(RealCall call) {
        runningSyncCalls.add(call);
      }
    
      /** Used by {@code AsyncCall#run} to signal completion. */
    
      void finished(AsyncCall call) {
        finished(runningAsyncCalls, call, true);
      }
    
      /** Used by {@code Call#execute} to signal completion. */
      //同步call已经完成,移除队列
      void finished(RealCall call) {
        finished(runningSyncCalls, call, false);
      }
    
      private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
        int runningCallsCount;
        Runnable idleCallback;
        synchronized (this) {
          if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
          if (promoteCalls) promoteCalls();
          runningCallsCount = runningCallsCount();
          idleCallback = this.idleCallback;
        }
    
        if (runningCallsCount == 0 && idleCallback != null) {
          idleCallback.run();
        }
      }
    
      /** Returns a snapshot of the calls currently awaiting execution. */
     //返回等待执行call的集合
      public synchronized List<Call> queuedCalls() {
        List<Call> result = new ArrayList<>();
        for (AsyncCall asyncCall : readyAsyncCalls) {
          result.add(asyncCall.get());
        }
        return Collections.unmodifiableList(result);
      }
    
      /** Returns a snapshot of the calls currently being executed. */
      public synchronized List<Call> runningCalls() {
        List<Call> result = new ArrayList<>();
        result.addAll(runningSyncCalls);
        for (AsyncCall asyncCall : runningAsyncCalls) {
          result.add(asyncCall.get());
        }
        return Collections.unmodifiableList(result);
      }
    
      public synchronized int queuedCallsCount() {
        return readyAsyncCalls.size();
      }
    
      public synchronized int runningCallsCount() {
        return runningAsyncCalls.size() + runningSyncCalls.size();
      }
    }
    
    

    在上面的同步call中,真正发出网络请求,解析返回结果的,还是getResponseWithInterceptorChain

    //重要的拦截器的责任链
     Response getResponseWithInterceptorChain() throws IOException {
        // Build a full stack of interceptors.
        List<Interceptor> interceptors = new ArrayList<>();
        interceptors.addAll(client.interceptors());                                //(1)
        interceptors.add(retryAndFollowUpInterceptor);                             //(2)
        interceptors.add(new BridgeInterceptor(client.cookieJar()));               //(3)
        interceptors.add(new CacheInterceptor(client.internalCache()));            //(4)
        interceptors.add(new ConnectInterceptor(client));                          //(5)
        if (!forWebSocket) {
          interceptors.addAll(client.networkInterceptors());
        }
        interceptors.add(new CallServerInterceptor(forWebSocket));
    
        Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
            originalRequest, this, eventListener, client.connectTimeoutMillis(),
            client.readTimeoutMillis(), client.writeTimeoutMillis());
    
        return chain.proceed(originalRequest);
      }
    

    3,在获得相应之前经过的最后一关就是拦截器Interceptor

    the whole thing is just a stack of built-in interceptors.

    可见 Interceptor 是 OkHttp 最核心的一个东西,不要误以为它只负责拦截请求进行一些额外的处理(例如 cookie),实际上它把实际的网络请求、缓存、透明压缩等功能都统一了起来,每一个功能都只是一个 Interceptor,它们再连接成一个 Interceptor.Chain,环环相扣,最终圆满完成一次网络请求。

    getResponseWithInterceptorChain 函数我们可以看到,Interceptor.Chain 的分布依次是:

    image.png

    (1)在配置 OkHttpClient时设置的interceptors
    (2)负责失败重试以及重定向的 RetryAndFollowUpInterceptor
    (3)负责把用户构造的请求转换为发送到服务器的请求、把服务器返回的响应转换为用户友好的响应的BridgeInterceptor
    (4)负责读取缓存直接返回、更新缓存的 CacheInterceptor
    (5)负责和服务器建立连接的ConnectInterceptor
    (6)配置 OkHttpClient 时设置的 networkInterceptors;
    (7)负责向服务器发送请求数据、从服务器读取响应数据CallServerInterceptor

    在这里,位置决定了功能,最后一个 Interceptor 一定是负责和服务器实际通讯的重定向、缓存等一定是在实际通讯之前的

    2.2 在2.1中我们深入讨论了同步请求的过程,下面讲讲异步请求原理

    代码:

    Request request = new Request.Builder()
            .url("http://publicobject.com/helloworld.txt")
            .build();
        //用request新建的call使用enqueue异步请求
        client.newCall(request).enqueue(new Callback() {
          @Override 
          public void onFailure(Call call, IOException e) {
            e.printStackTrace();
          }
    
          @Override 
          public void onResponse(Call call, Response response) throws IOException {
            //相应成功回调,response,非主线程
            if (!response.isSuccessful()) throw new IOException("Unexpected code " + response);
    
            Headers responseHeaders = response.headers();
            for (int i = 0, size = responseHeaders.size(); i < size; i++) {
              System.out.println(responseHeaders.name(i) + ": " + responseHeaders.value(i));
            }
    
            System.out.println(response.body().string());
          }
        });
    

    由代码中client.newCall(request).enqueue(Callback),开始我们知道client.newCall(request)方法返回的是RealCall对象,接下来继续向下看enqueue()方法:

    //异步任务使用
        @Override 
        public void enqueue(Callback responseCallback) {
            synchronized (this) {
                if (executed) throw new IllegalStateException("Already Executed");
                executed = true;
            }
            //送给分发器Dispatcher分发,其实Dispatcher中有线程池,把AsyncCall这个任务提交到线程池执行,通过responseCallback回调
            client.dispatcher().enqueue(new AsyncCall(responseCallback));
        }
    

    我们先看一下上面的Dispatcher类中的enqueue(Call )方法,在看看AsyncCall类:

    synchronized void enqueue(AsyncCall call) {
            if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
                runningAsyncCalls.add(call);
                executorService().execute(call);
            } else {
                readyAsyncCalls.add(call);
            }
        }
    

    如果中的runningAsynCalls不满,且call占用的host小于最大数量,则将call加入到runningAsyncCalls中执行,同时利用线程池执行call;否者将call加入到readyAsyncCalls中。runningAsyncCalls和readyAsyncCalls是什么呢?在把上面将同步Http请求时讲过了,可以瞄一眼。

    call加入到线程池中执行了。现在再看AsynCall的代码,它是RealCall中的内部类

    //异步请求,显然是继承了NamedRunnable ,在NamedRunnable 的run方法中执行继承的execute() 方法
        final class AsyncCall extends NamedRunnable {
            private final Callback responseCallback;
    
            private AsyncCall(Callback responseCallback) {
                super("OkHttp %s", redactedUrl());
                this.responseCallback = responseCallback;
            }
    
            String host() {
                return originalRequest.url().host();
            }
    
            Request request() {
                return originalRequest;
            }
    
            RealCall get() {
                return RealCall.this;
            }
    
            @Override protected void execute() {
                boolean signalledCallback = false;
                try {
                     //还是回到这个拦截器责任链函数得到响应,只不过当前这个过程是在线程池中进行的
                    Response response = getResponseWithInterceptorChain();
                    if (retryAndFollowUpInterceptor.isCanceled()) {
                        signalledCallback = true;
                        //回调异常
                        responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
                    } else {
                        signalledCallback = true;
                         //回调成功
                        responseCallback.onResponse(RealCall.this, response);
                    }
                } catch (IOException e) {
                    if (signalledCallback) {
                        // Do not signal the callback twice!
                        Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
                    } else {
                       //回调失败
                        responseCallback.onFailure(RealCall.this, e);
                    }
                } finally {
                    //告诉分发器Dispatcher请求执行完成
                    client.dispatcher().finished(this);
                }
            }
        }
    

    AysncCall中的execute()中的方法,同样是通过Response response = getResponseWithInterceptorChain();来获得response,这样异步任务也同样通过了interceptor,剩下的就想看看上面的几个拦截器是什么鬼。

    责任链拦截器Interceptor

    RetryAndFollowUpInterceptor:负责失败重试以及重定向
    BridgeInterceptor:负责把用户构造的请求转换为发送到服务器的请求、把服务器返回的响应转换为用户友好的响应的 。
    ConnectInterceptor:建立连接
    NetworkInterceptors:配置OkHttpClient时设置的 NetworkInterceptors
    CallServerInterceptor:发送和接收数据

    相关文章

      网友评论

        本文标题:OkHttp3实现原理分析(二)

        本文链接:https://www.haomeiwen.com/subject/xrjmnxtx.html