美文网首页OpenGL程序猿阵线联盟-汇总各类技术干货
零基础入门OpenGL系列教程(七、早期OpenGL立体渲染)

零基础入门OpenGL系列教程(七、早期OpenGL立体渲染)

作者: littlebutt | 来源:发表于2018-05-11 22:53 被阅读40次

    之前介绍了许多OpenGL平面图形的知识,再写一篇关于OpenGL立体图形的渲染。

    三维坐标系统

    由于要渲染立体图形,所以就不得不引入z轴形成三维坐标系统。在OpenGL中z轴就是穿过屏幕指向你的坐标轴。

    在三维坐标中定义一个点与二维坐标一样,调用void glVertex3f(GLfloat x,GLfloat y,GLfloat z,)函数可以定义一个三维坐标。若要传入一个三维坐标数组就调用void glVertex3fv(const GLfloat *v)函数即可。

    矩阵堆栈

    由于OpenGL对图形的变换是通过坐标点进行的,而三维图形又有大量的坐标点需要渲染。为了管理这些坐标点在变换中的状态,我们可以使用矩阵堆栈。

    矩阵堆栈和一般堆栈一样,有压入和弹出两个操作。需要压入堆栈就可以调用void glPushMatrix(void)函数,需要弹出就调用void glPopMatrix(void)函数。这些堆栈可以存放视图矩阵、投影矩阵和纹理矩阵,具体的内容暂且不提。

    绘制图形

    有了这些知识我们就可以简单的画一个六棱柱:

    void display()
    {
        glEnable(GL_SMOOTH);
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);
        
        glPushMatrix();
        static GLfloat vtx[12][3] =  //棱柱顶点坐标
        {
            {-0.5f,0.0f,0.0f},//0
            {-0.25f,0.0f,static_cast<GLfloat>(sqrt(3.0f)/4)},//1
            {-0.25f,0.0f,-static_cast<GLfloat>(sqrt(3.0f)/4)},//2
            {0.25f,0.0f,static_cast<GLfloat>(sqrt(3.0f)/4)},//3
            {0.25f,0.0f,-static_cast<GLfloat>(sqrt(3.0f)/4)},//4
            {0.5f,0.0f,0.0f},//5
            {-0.5f,0.5f,0.0f},//6
            {-0.25f,0.5f,static_cast<GLfloat>(sqrt(3.0f)/4)},//7
            {-0.25f,0.5f,-static_cast<GLfloat>(sqrt(3.0f)/4)},//8
            {0.25f,0.5f,static_cast<GLfloat>(sqrt(3.0f)/4)},//9
            {0.25f,0.5f,-static_cast<GLfloat>(sqrt(3.0f)/4)},//10
            {0.5f,0.5f,0.0f},//11
        };
        GLfloat color[6][3] =  //棱柱顶点颜色
        {
            {0.0f,0.0f,1.0f},
            {1.0f,0.0f,0.0f},
            {1.0f,1.0f,0.0f},
            {1.0f,0.0f,1.0f},
            {1.0f,0.0f,0.0f},
            {0.0f,1.0f,0.0f}
        };
        glRotatef(60.0f,0.0f,0.0f,0.0f);
        
        glFrontFace(GL_CCW);
        glPolygonMode(GL_FRONT, GL_FILL);
        glPolygonMode(GL_BACK, GL_FILL);
    
        glBegin(GL_POLYGON);
        glColor3fv(color[0]);
        glVertex3fv(vtx[2]);
        glColor3fv(color[1]);
        glVertex3fv(vtx[4]);
        glColor3fv(color[2]);
        glVertex3fv(vtx[5]);
        glColor3fv(color[3]);
        glVertex3fv(vtx[3]);
        glColor3fv(color[4]);
        glVertex3fv(vtx[1]);
        glColor3fv(color[5]);
        glVertex3fv(vtx[0]);
        glEnd();
        
        glBegin(GL_QUADS);
        glColor3fv(color[0]);
        glVertex3fv(vtx[8]);
        glColor3fv(color[1]);
        glVertex3fv(vtx[10]);
        glColor3fv(color[2]);
        glVertex3fv(vtx[4]);
        glColor3fv(color[0]);
        glVertex3fv(vtx[2]);
         
        glColor3fv(color[0]);
        glVertex3fv(vtx[6]);
        glColor3fv(color[1]);
        glVertex3fv(vtx[8]);
        glColor3fv(color[2]);
        glVertex3fv(vtx[2]);
        glColor3fv(color[0]);
        glVertex3fv(vtx[0]);
        
        glColor3fv(color[0]);
        glVertex3fv(vtx[10]);
        glColor3fv(color[1]);
        glVertex3fv(vtx[11]);
        glColor3fv(color[2]);
        glVertex3fv(vtx[5]);
        glColor3fv(color[0]);
        glVertex3fv(vtx[4]);
        
        glColor3fv(color[0]);
        glVertex3fv(vtx[1]);
        glColor3fv(color[1]);
        glVertex3fv(vtx[3]);
        glColor3fv(color[2]);
        glVertex3fv(vtx[9]);
        glColor3fv(color[0]);
        glVertex3fv(vtx[7]);
        
        glColor3fv(color[3]);
        glVertex3fv(vtx[0]);
        glColor3fv(color[4]);
        glVertex3fv(vtx[1]);
        glColor3fv(color[5]);
        glVertex3fv(vtx[7]);
        glColor3fv(color[0]);
        glVertex3fv(vtx[6]);
    
        glColor3fv(color[0]);
        glVertex3fv(vtx[3]);
        glColor3fv(color[1]);
        glVertex3fv(vtx[5]);
        glColor3fv(color[2]);
        glVertex3fv(vtx[11]);
        glColor3fv(color[0]);
        glVertex3fv(vtx[9]);
        glEnd();
       
        glBegin(GL_POLYGON);
        glColor3fv(color[3]);
        glVertex3fv(vtx[6]);
        glColor3fv(color[4]);
        glVertex3fv(vtx[7]);
        glColor3fv(color[5]);
        glVertex3fv(vtx[9]);
        glColor3fv(color[0]);
        glVertex3fv(vtx[11]);
        glColor3fv(color[1]);
        glVertex3fv(vtx[10]);
        glColor3fv(color[2]);
        glVertex3fv(vtx[8]);
        glEnd();
    
        glPopMatrix();
        glFlush();
    }
    

    这段代码简单的运用了三维坐标和矩阵堆栈,虽然矩阵堆栈在这里用处不大。颜色随便定义的。此外我还用到旋转函数glRotatef(60.0f,0.0f,0.0f,0.0f);将图形沿x轴稍微向外旋转了一下。看一下效果:

    六棱柱

    有一点需要注意,我画面的时候是先画背面再画正面,否则正面会被背面挡住。另外,由于我定义了面的方向,所以我画点也是有顺序的(具体可看上一篇)。

    但是这是静态的,我们画了那么多只能看见一部分,因此我通过调用时间库让它动起来。

    引入时间库函数头文件和数学库头文件

    #include <cmath>
    #include <time.h>
    

    利用刚刚讲的void glRotatef(GLfloat x,GLfloat y,GLfloat z,GLfloat w)函数实现旋转,随便绕哪个轴。

    clock_t now = clock();
    glRotatef(sin(0.0001 * now) * 360,cos(0.0001 * now) * 360 ,sin(0.0001 * now) * 360,0.0f);
    

    在刷新缓冲后设置重绘状态,这个函数应该在前面讲过。(虽然这么做有可能存在堆栈的问题)

    glutPostRedisplay();
    

    看一下效果。

    效果图

    法线向量和光照

    画好了立体图形并且会动了,但还是感觉距离真是物体差很远。我决定给它加上阴影让它看起来更真实点。

    有阴影就必须有光照,而OpenGL的光照效果除了要设置光源外还要给不同的面设置法线向量。我通过调用void glNormal3fv(const GLfloat *v)函数直接传一个法线向量。

     GLfloat norm[8][3] =  //三棱柱各面法向
        {
            {0.0f,1.0f,0.0f},   //底面
            {0.0f,0.0f,1.0f},    //前一面
            {static_cast<GLfloat>(sqrt(3.0f)/4),0.0f,-0.25f},    //前二面
            {static_cast<GLfloat>(sqrt(3.0f)/4),0.0f,0.25f},      //前三面
            {0.0f,0.0f,1.0f},    //后一面
            {static_cast<GLfloat>(sqrt(3.0f)/4),0.0f,0.25f},    //后二面
            {static_cast<GLfloat>(sqrt(3.0f)/4),0.0f,-0.25f},//后三面
            {0.0f,1.0f,0.0f}     //顶面
            
        };
    
    

    然后在每次画面的同时插入相应的法线向量绘制函数,例如底面的glNormal3fv(norm[0]);

    最后再加入光源。这个光源也是有讲究的,不过我不打算深入的介绍。放一下我的代码。

        GLfloat light_pos[] = {-1.0f,-1.0f,-1.0f,1.0f};
        GLfloat light_ambient[] = {0.0f,0.0f,0.0f,1.0f};
        GLfloat light_difuse[] = {1.0f,1.0f,1.0f,1.0f};
        GLfloat light_specular[] = {1.0f,1.0f,1.0f,1.0f};
        glLightfv(GL_LIGHT0, GL_POSITION, light_pos);
        glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
        glLightfv(GL_LIGHT0, GL_DIFFUSE, light_difuse);
        glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
        glEnable(GL_LIGHT0);
        glEnable(GL_LIGHTING);
    

    照理说这样设置就可以了,但是光照到物体上的话,物体也会根据材质反射不同的质感。比如说紫砂壶的光泽和陶瓷瓶的光泽肯定是不一样的。

        GLfloat mat_ambient[]   = {0.5f, 0.5f, 0.5f, 1.0f};
        GLfloat mat_diffuse[]   = {0.5f, 0.5f, 0.5f, 1.0f};
        GLfloat mat_specular[] = {0.0f, 0.0f, 0.0f, 1.0f};
        GLfloat mat_emission[] = {0.0f, 0.0f, 0.0f, 1.0f};
        GLfloat mat_shininess   = 30.0f;
        glMaterialfv(GL_FRONT, GL_AMBIENT,    mat_ambient);
        glMaterialfv(GL_FRONT, GL_DIFFUSE,    mat_diffuse);
        glMaterialfv(GL_FRONT, GL_SPECULAR,   mat_specular);
        glMaterialfv(GL_FRONT, GL_EMISSION,   mat_emission);
        glMaterialf (GL_FRONT, GL_SHININESS,  mat_shininess);
    

    最后看一下效果(为了看效果我把颜色都去掉了)。

    效果图

    这次博客其实是按照我做作业的顺序讲的,接下来可能会讲到图形变换吧。但早期OpenGL我感觉会马上结束了,之后我会尝试现代OpenGL,不过那也是暑假的事了吧。

    相关文章

      网友评论

        本文标题:零基础入门OpenGL系列教程(七、早期OpenGL立体渲染)

        本文链接:https://www.haomeiwen.com/subject/xrqtdftx.html