给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。
示例 1:
输入: strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出: 4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。
解题思路:动态规划
经典的背包问题可以使用二维动态规划求解,两个维度分别是物品和容量。这道题有两种容量,因此需要使用三维动态规划求解,三个维度分别是字符串、0 的容量和 1 的容量。
定义三维数组 dp,其中dp[i][j][k] 表示在前 i 个字符串中,使用 j 个 0 和 k 个 1 的情况下最多可以得到的字符串数量。
当没有任何字符串可以使用时,可以得到的字符串数量只能是 0,因此动态规划的边界条件是:当 i=0 时,对任意 0≤j≤m 和 0≤k≤n,都有dp[0][j][k]=0。
状态转移方程如下:
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
int length = strs.length;
int[] mt = new int[length];
int[] nt = new int[length];
int[][][] dp = new int[length+1][m+1][n+1];
for (int i=1; i<=length; i++) {
int count1= 0;
for (int j=0; j<strs[i-1].length(); j++) {
if(strs[i-1].charAt(j) == '0') {
count1++;
}
}
mt[i-1] = count1;
nt[i-1] = strs[i-1].length() - count1;
for (int lm=0; lm<=m; lm++) {
for (int ln=0; ln<=n; ln++) {
if(lm-mt[i-1] < 0 || ln-nt[i-1]<0) {
dp[i][lm][ln] = dp[i-1][lm][ln];
} else {
dp[i][lm][ln] = Math.max(dp[i-1][lm][ln], dp[i-1][lm-mt[i-1]][ln-nt[i-1]]+1);
}
}
}
}
return dp[length][m][n];
}
}
网友评论