美文网首页生物信息
《计算分子进化》练习题探讨-第1章

《计算分子进化》练习题探讨-第1章

作者: Cherrieg | 来源:发表于2021-03-10 09:40 被阅读0次

    最近在学习杨子恒老师的《计算分子进化》,对于每一章后面的练习题,网上也未必找得到答案,故将自己的计算放到这里,如有同学共同探讨,则更加深进步。

    由于我数学水平有限,所以很多题未必解出,这里只放解出的习题。

    第1章 核苷酸置换模型

    1. 采用JC69模型下的转换概率(公式(1.3))来验证Chapman-Kolmogorov定理(公式(1.4))。考虑两种情形即可:(1)i=T,j=T;(2)i=T,j=C。例如:在(1)中,确定p_{TT}(t_{1}+t_{2})=p_{TT}(t_{1})p_{TT}(t_{2})+p_{TC}(t_{1})p_{CT}(t_{2})+p_{TA}(t_{1})p_{AT}(t_{2})+p_{TG}(t_{1})p_{GT}(t_{2})

    解:公式(1.3):P(t)=e^{Qt}=\begin{pmatrix}p_{0}(t) & p_{1}(t) & p_{1}(t) & p_{1}(t)\\p_{1}(t) & p_{0}(t) & p_{1}(t) & p_{1}(t) \\p_{1}(t) & p_{1}(t) & p_{0}(t) & p_{1}(t) \\p_{1}(t) & p_{1}(t) & p_{1}(t) & p_{0}(t)\end{pmatrix},其中p_{0}(t)=\frac{1}{4}+\frac{3}{4}e^{-4\lambda t}p_{1}(t)=\frac{1}{4}-\frac{1}{4}e^{-4\lambda t}

    第一种情形:p_{TT}(t_{1}+t_{2})=\frac{1}{4}+\frac{3}{4}e^{-4\lambda (t_{1}+t_{2})}

    p_{TT}(t_{1})p_{TT}(t_{2})+p_{TC}(t_{1})p_{CT}(t_{2})+p_{TA}(t_{1})p_{AT}(t_{2})+p_{TG}(t_{1})p_{GT}(t_{2})

    =(\frac{1}{4} +\frac{3}{4} e^{-4\lambda t_{1}})(\frac{1}{4} +\frac{3}{4} e^{-4\lambda t_{2}}) + 3(\frac{1}{4} -\frac{1}{4} e^{-4\lambda t_{1}})(\frac{1}{4} -\frac{1}{4} e^{-4\lambda t_{2}})

    =(\frac{1}{4} )^2+\frac{1}{4} \times \frac{3}{4} e^{-4\lambda t_{2}}+\frac{1}{4} \times \frac{3}{4} e^{-4\lambda t_{1}}+(\frac{3}{4} )^2 e^{-4\lambda t_{1}-4\lambda t_{2}}+3[(\frac{1}{4} )^2-\frac{1}{4}\times \frac{1}{4}e^{-4\lambda t_{2}} -\frac{1}{4}\times \frac{1}{4}e^{-4\lambda t_{1}} +(\frac{1}{4} )^2 e^{-4\lambda t_{1}-4\lambda t_{2}}]

    =\frac{1}{4} +\frac{3}{4} e^{-4\lambda (t_{1}+t_{2})}=p_{TT}(t_{1}+t_{2})

    第二种情形:p_{TC}(t_{1}+t_{2})=\frac{1}{4}-\frac{1}{4}e^{-4\lambda (t_{1}+t_{2})}

    p_{TC}(t_{1})p_{CC}(t_{2})+p_{TA}(t_{1})p_{AC}(t_{2})+p_{TG}(t_{1})p_{GC}(t_{2})+p_{TT}(t_{1})p_{TC}(t_{2})

    =(\frac{1}{4}+\frac{3}{4}e^{-4\lambda t_{1}})(\frac{1}{4}-\frac{1}{4}e^{-4\lambda t_{2}})+2(\frac{1}{4}-\frac{1}{4}e^{-4\lambda t_{1}})(\frac{1}{4}-\frac{1}{4}e^{-4\lambda t_{2}})+(\frac{1}{4}-\frac{1}{4}e^{-4\lambda t_{1}})(\frac{1}{4}+\frac{3}{4}e^{-4\lambda t_{2}})

    =(\frac{1}{4} )^2+\frac{1}{4}\times \frac{3}{4}e^{-4\lambda t_{1}}-(\frac{1}{4})^2e^{-4\lambda t_{2}}-\frac{1}{4} \times \frac{3}{4}e^{-4\lambda t_{1}-4\lambda t_{2}}+(\frac{1}{4} )^2-\frac{1}{4}\times \frac{1}{4}e^{-4\lambda t_{1}}+\frac{1}{4}\times \frac{3}{4}e^{-4\lambda t_{2}}-\frac{1}{4} \times \frac{3}{4}e^{-4\lambda t_{1}-4\lambda t_{2}}+2[(\frac{1}{4} )^2-(\frac{1}{4} )^2e^{-4\lambda t_{1}}-(\frac{1}{4} )^2e^{-4\lambda t_{2}}+(\frac{1}{4} )^2e^{-4\lambda t_{1}-4\lambda t_{2}}]

    =\frac{1}{4}-\frac{1}{4}e^{-4\lambda (t_{1}+t_{2})}=p_{TC}(t_{1}+t_{2})

    p_{ij}(t_{1}+t_{2})=\sum_{k}p_{ik}(t_{1})p_{kj}(t_{2}) 得证。

    2. 推导JC69模型下的转换概率矩阵P(t)=e^{Qt}。采用1.2.3节的结果,设速率矩阵(公式(1.15))中基于TN93模型得到的特征值\pi_{T}= \pi_{C}=\pi_{A}=\pi_{G}=\frac{1}{4},以及基于JC69模型Q的特征向量\alpha_{1}=\alpha_{2}=\beta 。另一种方案是可以从公式(1.1)直接推导特征值和特征向量,然后用公式(1.17)。

    解:由1.2.3节的结果,

    P(t)=\begin{pmatrix}\pi_{T}+\frac{\pi_{T}\pi_{R}}{\pi_{Y}}e_{2}+\frac{\pi_{C}}{\pi_{Y}}e_{4} & \pi_{C}+\frac{\pi_{C}\pi_{R}}{\pi_{Y}}e_{2}-\frac{\pi_{C}}{\pi_{Y}}e_{4} & \pi_{A}(1-e_{2}) & \pi_{G}(1-e_{2}) \\ \pi_{T}+\frac{\pi_{T}\pi_{R}}{\pi_{Y}}e_{2}-\frac{\pi_{T}}{\pi_{Y}}e_{4} & \pi_{C}+\frac{\pi_{C}\pi_{R}}{\pi_{Y}}e_{2}+\frac{\pi_{T}}{\pi_{Y}}e_{4} & \pi_{A}(1-e_{2}) & \pi_{G}(1-e_{2}) \\ \pi_{T}(1-e_{2}) & \pi_{C}(1-e_{2}) & \pi_{A}+\frac{\pi_{A}\pi_{Y}}{\pi_{R}}e_{2}+\frac{\pi_{G}}{\pi_{R}}e_{3} & \pi_{G}+\frac{\pi_{G}\pi_{Y}}{\pi_{R}}e_{2}-\frac{\pi_{G}}{\pi_{R}}e_{3} \\ \pi_{T}(1-e_{2}) & \pi_{C}(1-e_{2}) & \pi_{A}+\frac{\pi_{A}\pi_{Y}}{\pi_{R}}e_{2}-\frac{\pi_{A}}{\pi_{R}}e_{3} & \pi_{G}+\frac{\pi_{G}\pi_{Y}}{\pi_{R}}e_{2}+\frac{\pi_{A}}{\pi_{R}}e_{3} \end{pmatrix}

    其中,e_{2}=exp(\lambda_{2}t)=exp(-\beta t)e_{3}=exp(\lambda_{3}t)=exp[-(\pi_{R}\alpha_{2}+\pi_{Y}\beta)t]e_{4}=exp(\lambda_{4}t)=exp[-(\pi_{Y}\alpha_{1}+\pi_{R}\beta)t]

    根据特征值\pi_{T}= \pi_{C}=\pi_{A}=\pi_{G}=\frac{1}{4}化简P(t),其中\pi_{Y}=\pi_{T}+\pi_{C}\pi_{R}=\pi_{A}+\pi_{G}

    P(t)=\begin{pmatrix} \frac{1}{4}+\frac{1}{4}e_{2}+\frac{1}{2}e_{4} & \frac{1}{4}+\frac{1}{4}e_{2}-\frac{1}{2}e_{4} & \frac{1}{4}-\frac{1}{4}e_{2} & \frac{1}{4}-\frac{1}{4}e_{2} \\ \frac{1}{4}+\frac{1}{4}e_{2}-\frac{1}{2}e_{4} & \frac{1}{4}+\frac{1}{4}e_{2}+\frac{1}{2}e_{4} & \frac{1}{4}-\frac{1}{4}e_{2} & \frac{1}{4}-\frac{1}{4}e_{2} \\ \frac{1}{4}-\frac{1}{4}e_{2} & \frac{1}{4}-\frac{1}{4}e_{2} & \frac{1}{4}+\frac{1}{4}e_{2}+\frac{1}{2}e_{3} & \frac{1}{4}+\frac{1}{4}e_{2}-\frac{1}{2}e_{3} \\ \frac{1}{4}-\frac{1}{4}e_{2} & \frac{1}{4}-\frac{1}{4}e_{2} & \frac{1}{4}+\frac{1}{4}e_{2}-\frac{1}{2}e_{3} & \frac{1}{4}+\frac{1}{4}e_{2}+\frac{1}{2}e_{3} \end{pmatrix}

    \alpha_{1}=\alpha_{2}=\beta 代入,得

    P(t)=\begin{pmatrix} \frac{1}{4}+\frac{3}{4}e^{-\beta t} & \frac{1}{4}-\frac{1}{4}e^{-\beta t} & \frac{1}{4}-\frac{1}{4}e^{-\beta t} & \frac{1}{4}-\frac{1}{4}e^{-\beta t} \\ \frac{1}{4}-\frac{1}{4}e^{-\beta t} & \frac{1}{4}+\frac{3}{4}e^{-\beta t} & \frac{1}{4}-\frac{1}{4}e^{-\beta t} & \frac{1}{4}-\frac{1}{4}e^{-\beta t} \\ \frac{1}{4}-\frac{1}{4}e^{-\beta t} & \frac{1}{4}-\frac{1}{4}e^{-\beta t} & \frac{1}{4}+\frac{3}{4}e^{-\beta t} & \frac{1}{4}-\frac{1}{4}e^{-\beta t} \\ \frac{1}{4}-\frac{1}{4}e^{-\beta t} & \frac{1}{4}-\frac{1}{4}e^{-\beta t} & \frac{1}{4}-\frac{1}{4}e^{-\beta t} & \frac{1}{4}+\frac{3}{4}e^{-\beta t} \end{pmatrix}

    在JC69模型中,任意一个核苷酸i的总置换率为3\lambda,记为-q_{ii}-q_{ii}=\sum_{j\neq i} q_{ij}

    3\lambda = -q_{ii}=\sum_{j\neq i} q_{ij}=\pi_{C}\alpha_{1}+\beta \pi_{A}+\beta \pi_{G}=\frac{1}{4}\alpha_{1}+\frac{1}{4}\beta+\frac{1}{4}\beta=\frac{3}{4}\beta

    解得\beta=4\lambda,故

    P(t)=\begin{pmatrix} \frac{1}{4}+\frac{3}{4}e^{-4\lambda t} & \frac{1}{4}-\frac{1}{4}e^{-4\lambda t} & \frac{1}{4}-\frac{1}{4}e^{-4\lambda t} & \frac{1}{4}-\frac{1}{4}e^{-4\lambda t} \\ \frac{1}{4}-\frac{1}{4}e^{-4\lambda t} & \frac{1}{4}+\frac{3}{4}e^{-4\lambda t} & \frac{1}{4}-\frac{1}{4}e^{-4\lambda t} & \frac{1}{4}-\frac{1}{4}e^{-4\lambda t} \\ \frac{1}{4}-\frac{1}{4}e^{-4\lambda t} & \frac{1}{4}-\frac{1}{4}e^{-4\lambda t} & \frac{1}{4}+\frac{3}{4}e^{-4\lambda t} & \frac{1}{4}-\frac{1}{4}e^{-4\lambda t} \\ \frac{1}{4}-\frac{1}{4}e^{-4\lambda t} & \frac{1}{4}-\frac{1}{4}e^{-4\lambda t} & \frac{1}{4}-\frac{1}{4}e^{-4\lambda t} & \frac{1}{4}+\frac{3}{4}e^{-4\lambda t} \end{pmatrix}

    相关文章

      网友评论

        本文标题:《计算分子进化》练习题探讨-第1章

        本文链接:https://www.haomeiwen.com/subject/xsrbqltx.html