美文网首页
2019-03-21

2019-03-21

作者: 快乐的大脚aaa | 来源:发表于2019-03-22 10:29 被阅读0次
  • 时域信号与频域信号
  • 时域表示:cos(2\pi f_c t)
    • 频域表示:\pi [\delta(f+f_c)+\delta(f-f_c)]
    • 矩形脉冲
      • rect{\frac{t}{T}}
      • T\cdot sinc(fT)
  • 时移
    • x(t) = \int_{-\infty}^{\infty}X(f)e^{j2\pi ft}df
    • x(t-t_0) = \int_{-\infty}^{\infty}X(f)e^{j2\pi f(t-t_0)}df
    • = \int_{-\infty}^{\infty}X(f)e^{-j 2 \pi f t_0} \cdot e^{j 2\pi ft}df
    • \mathcal{F}[x(t-t_0)] = X(f)e^{-j2\pi ft_0}
  • 频移
    • x(t) = \int_{-\infty}^{\infty}X(f)e^{j2\pi ft}df
    • 两边乘以频率为f_0的复单频信号e^{j2\pi f_0t}
    • x(t)e^{j2\pi f_0t} = \int_{-\infty}^{\infty}X(f)e^{j2\pi ft}e^{j2\pi f_0t}df
    • = \int_{-\infty}^{\infty}X(f)e^{j2\pi (f+f_0)t}df
    • = \int_{-\infty}^{\infty}X(f-f_0)e^{j2\pi ft}df
    • \mathcal{F}[x(t)e^{j2\pi f_0 t}] = X(f-f_0)
  • eg:m(t)的傅氏变换为M(f),s(t) = m(t)\cdot Acos(2\pi f_0t+\theta)
    • cos(2\pi f_0 t+\theta)= \frac{1}{2}\{e^{j\theta} \cdot e^{j2\pi f_0t} + e^{-j\theta} \cdot e^{-j2\pi f_0t} \}
    • s(t) = \frac{A}{2}m(t)e^{j\theta} \cdot e^{j2\pi f_0t} + \frac{A}{2}m(t) e^{-j\theta} \cdot e^{-j2\pi f_0t}
    • \mathcal{F}[s(t)] = \frac{A}{2}e^{j\theta} M(f-f_0)+\frac{A}{2}e^{-j\theta} M(f+f_0)
  • 共轭
    • \mathcal{F}[x(t)] = X(f)
    • \mathcal{F}[x^*(t)] =\int_{-\infty}^{\infty}x^*(t)e^{-j2\pi ft} dt
    • =\int_{-\infty}^{\infty}[x(t)e^{j2\pi ft}dt]^*
    • =\int_{-\infty}^{\infty}[x(t)e^{-j2\pi (-f)t}dt]^*
    • = [X(-f)]^* = X^*(-f)
    • 实信号满足共轭对称性,x^*(t) = x(t)
      • 因此其频谱满足共轭对称性X(f) = X^*(-f)
  • 时域镜像,频域也镜像
  • 微分
    • x(t) = \int_{-\infty}^{\infty}X(f)e^{j2\pi f t}df
    • 两边对t微分
      • x^{'}(t) = \int_{-\infty}^{\infty}(j2\pi f)X(f)e^{j2\pi f t}df
      • \mathcal{F}[x^{'}(t)] = (j2\pi f)X(f)
    • \mathcal{F^{-1}}[X^{'}(f)] = (-j2\pi t)x(t)
  • eg:h(t)的频谱是H(f) = -j\cdot sgn(f) = \begin{cases}-j,f >0 \\ j,f<0\end{cases}
    • H^{'}(f) = -j\cdot 2\delta(f)
    • \mathcal{F^{-1}}[-j2\delta(f)] = -2j
    • \mathcal{F^{-1}}[H^{'}(f)] = (-j2\pi t)h(t)
    • h(t) = \frac{F^{-1} [-j2\delta(f)]}{-j2\pi t} = \frac{1}{\pi t}

相关文章

网友评论

      本文标题:2019-03-21

      本文链接:https://www.haomeiwen.com/subject/xtafvqtx.html