美文网首页
Deep Learning | 4 Convolutional

Deep Learning | 4 Convolutional

作者: shawn233 | 来源:发表于2018-07-06 12:01 被阅读0次
  • Convolution Operation

Edge Detection

  • Vertical Edge Detection
  • Horizontal Edge Detection

Filter

  • Filter
  • Sobel Filter
  • Scharr Filter
  • Learned Filter

Padding

  • Padding: Prevent shrinking of size in the output

Valid / Same Convolutions

  • Valid Convolutions: no padding. (n, n) * (f, f) -> (n-f+1, n-f+1)
  • Same Convolutions: pad to keep size. (n+2p, n+2p) * (f, f) -> (n+2p-f+1, n+2p-f+1). When p = (f-1)/2, n + 2p - f + 1 = n. So, if f = 3, p = 1; if f = 5, p = 2.

Strided Convolutions

  • Strided Convolutions

Convention: the filter must lie entirely inside the image plus padding to generate the result of the convolution operation.

image.shape = (n, n)
filter.shape = (f, f)
padding = p
stride = s

output.shape = ( floor( (n + 2p - f) / s + 1), floor( (n + 2p - f) / s + 1) )
  • Volume Convolutions
padding = 0
stride = 1
(n, n, n_c) * (f, f, n_c) -> (n-f+1, n-f+1, n_f)
n_c is the number of channels of the input image
n_f is the number of filters

ConvNet Single Layer

Type of Layers in a Convolutional Network

  • Convolution (CONV)
  • Pooling (POOL)
  • Fully Connected (FC)

Pooling

  • Max pooling
  • Average pooling
  • Hyper-parameters: filter size, stride, max or average pooling(, padding). If set f=2, s=2, the output is half the width and half the height of the input.
  • No parameters to learn, pooling is just a fixed function
  • Conventionally, each conv layer is followed by a pooling layer, and they are together called one layer in the conv net.

Classic Conv Net Architecture

  • LeNet - 5
  • AlexNet
  • VGG - 16

相关文章

网友评论

      本文标题:Deep Learning | 4 Convolutional

      本文链接:https://www.haomeiwen.com/subject/xumuuftx.html