构造数据集
import pandas as pd
df ={'姓名':[' 黄同学','黄至尊','黄老邪 ','陈大美','孙尚香'],
'英文名':['Huang tong_xue','huang zhi_zun','Huang Lao_xie','Chen Da_mei','sun shang_xiang'],
'性别':['男','women','men','女','男'],
'身份证':['463895200003128433','429475199912122345','420934199110102311','431085200005230122','420953199509082345'],
'身高':['mid:175_good','low:165_bad','low:159_bad','high:180_verygood','low:172_bad'],
'家庭住址':['湖北广水','河南信阳','广西桂林','湖北孝感','广东广州'],
'电话号码':['13434813546','19748672895','16728613064','14561586431','19384683910'],
'收入':['1.1万','8.5千','0.9万','6.5千','2.0万']}
df = pd.DataFrame(df)
df
1. cat函数:字符串的拼接
df["姓名"].str.cat(df["家庭住址"],sep='-'*3)
2. contains函数:判断某个字符串是否包含指定字符
df["家庭住址"].str.contains("广")
3. startswith、endswith函数:判断某个字符串是否以指定开头/结尾
#以黄开头
df["姓名"].str.startswith("黄")
#以E结尾
df["英文名"].str.endswith("E")
4. count函数:计算指定字符在字符串中出现的次数
df["电话号码"].str.count("3")
5. get函数:获取指定位置的字符串
df["姓名"].str.get(-1)
df["身高"].str.split(":")
df["身高"].str.split(":").str.get(0)
6. len函数:计算字符串长度
df["性别"].str.len()
7.upper、lower函数:英文大小写转换
df["英文名"].str.upper()
df["英文名"].str.lower()
8.pad+side参数/center函数:在字符串的左边、右边或左右两边添加给定字符
df["家庭住址"].str.pad(10,fillchar="*") # 相当于ljust()
df["家庭住址"].str.pad(10,side="right",fillchar="*") # 相当于rjust()
df["家庭住址"].str.center(10,fillchar="*")
9. repeat函数:重复字符串几次
df["性别"].str.repeat(3)
10. slice_replace函数:使用指定的字符串,替换指定的位置的字符
df["电话号码"].str.slice_replace(4,8,"*"*4)
11. replace函数:将指定位置的字符,替换为给定的字符串
df["身高"].str.replace(":","-")
#这个函数还接受正则表达式,将指定位置的字符,替换为给定的字符串
df["收入"].str.replace("\d+\.\d+","正则")
12. split方法+expand参数:将一列扩展为好几列
# 普通用法
df["身高"].str.split(":")
# split方法,搭配expand参数
df[["身高描述","final身高"]] = df["身高"].str.split(":",expand=True)
df
# split方法搭配join方法
df["身高"].str.split(":").str.join("?"*5)
13. strip、rstrip、lstrip函数:去除空白符、换行符
df["姓名"].str.len()
df["姓名"] = df["姓名"].str.strip()
df["姓名"].str.len()
14. findall函数:利用正则表达式,去字符串中匹配,返回查找结果的列表
df["身高"]
df["身高"].str.findall("[a-zA-Z]+")
15. extract、extractall函数:接受正则表达式,抽取匹配的字符串(一定要加上括号)
df["身高"].str.extract("([a-zA-Z]+)")
# extractall提取得到复合索引
df["身高"].str.extractall("([a-zA-Z]+)")
# extract搭配expand参数
df["身高"].str.extract("([a-zA-Z]+).*?([a-zA-Z]+)",expand=True)
网友评论