美文网首页动态规划
1. DP_LeetCode114. Distinct Subs

1. DP_LeetCode114. Distinct Subs

作者: Arthur_7724 | 来源:发表于2018-06-10 17:30 被阅读0次

    一、题目

    Given a string S and a string T, count the number of distinct subsequences of T in S.A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

    Here is an example:
    S = "rabbbit", T = "rabbit"

    Return 3.

    给定两个字符串S和T,求S有多少个不同的子串与T相同。S的子串定义为在S中任意去掉0个或者多个字符形成的串。

    二、解题思路

    动态规划,设 dp[i][j] d[i][j]表示S[0....i]中包含多少个和T[0.....j]相同的子串,动态规划方程如下

    • 如果S[i] = T[j], dp[i][j] = dp[i-1][j-1]+dp[i-1 ][j]

    • 如果S[i] 不等于 T[j], dp[i][j] = dp[i-1][j]

    • 初始条件:当T为空字符串时,从任意的S删除几个字符得到T的方法为1

    • dp[0][0] = 1 ; // T和S都是空串.

      dp[1 ... S.length() - 1][0] = 1; // T是空串,S只有一种子序列匹配。

      dp[0][1 ... T.length() - 1] = 0; // S是空串,T不是空串,S没有子序列匹配。

    三、解题代码

    public int numDistincts(String S, String T){  
      int[][] table = new int[S.length() + 1][T.length() + 1];  
      //initialize data  
      for (int i = 0; i < S.length(); i++)  
          table[i][0] = 1;  
      
      for (int i = 1; i <= S.length(); i++) {  
          for (int j = 1; j <= T.length(); j++) {  
              if (S.charAt(i - 1) == T.charAt(j - 1)) {  
                  table[i][j] += table[i - 1][j] + table[i - 1][j - 1];  
              } else {  
                  table[i][j] += table[i - 1][j];  
              }  
          }  
      }  
      return table[S.length()][T.length()];  
    }  
    

    下一篇: 2. DP_最长公共子序列

    相关文章

      网友评论

        本文标题:1. DP_LeetCode114. Distinct Subs

        本文链接:https://www.haomeiwen.com/subject/yafqeftx.html