美文网首页
MapReduce 案例之倒排索引

MapReduce 案例之倒排索引

作者: piziyang12138 | 来源:发表于2018-09-20 10:50 被阅读0次

1. 倒排索引

倒排索引是文档检索系统中最常用的数据结构,被广泛地应用于全文搜索引擎。 它主要是用来存储某个单词(或词组) 在一个文档或一组文档中的存储位置的映射,即提供了一种根据内容来查找文档的方式。由于不是根据文档来确定文档所包含的内容,而是进行相反的操作,因而称为倒排索引( Inverted Index)。

2. 实例描述

通常情况下,倒排索引由一个单词(或词组)以及相关的文档列表组成,文档列表中的文档或者是标识文档的 ID 号,或者是指文档所在位置的 URL。如下图所示:

image.png

从上图可以看出,单词 1 出现在{文档 1,文档 5,文档 13, ……}中,单词 2 出现在{文档 2,文档 3,文档 5, ……}中,而单词 3 出现在{文档 2,文档 10,文档 16, ……}中。在实际应用中,还需要给每个文档添加一个权值,用来指出每个文档与搜索内容的相关度,如下图所示:

image.png

最常用的是使用词频作为权重,即记录单词在文档中出现的次数。以英文为例,如下图所示,索引文件中的“ MapReduce”一行表示:“ MapReduce”这个单词在文本 T0 中 出现过 1 次,T1 中出现过 1 次,T2 中出现过 2 次。

image.png

3. 设计思路

3.1 Map过程

首先使用默认的 TextInputFormat 类对输入文件进行处理,得到文本中每行的偏移量及其内容。显然, Map 过程首先必须分析输入的key/value对,得到倒排索引中需要的三个信息:单词、文档 URL 和词频,如下图所示。


image.png

这里存在两个问题:第一, key/value对只能有两个值,需要根据情况将其中两个值合并成一个值,作为 key 或 value 值;
第二,通过一个 Reduce 过程无法同时完成词频统计和生成文档列表,所以必须增加一个 Combine 过程完成词频统计。
这里将单词和 URL 组成 key 值(如“ MapReduce: file1.txt”),将词频作为value,这样做的好处是可以利用 MapReduce 框架自带的Map 端排序,将同一文档的相同单词的词频组成列表,传递给 Combine 过程,实现类似于 WordCount 的功能。

3.2 Combine 过程

经过 map 方法处理后, Combine 过程将 key 值相同 value 值累加,得到一个单词在文档中的词频。 如果直接将图所示的输出作为 Reduce 过程的输入,在 Shuffle 过程时将面临一个问题:所有具有相同单词的记录(由单词、 URL 和词频组成)应该交由同一个Reducer 处理,但当前的 key 值无法保证这一点,所以必须修改 key 值和 value 值。这次将单词作为 key 值, URL 和词频组成 value 值(如“ file1.txt: 1”)。这样做的好处是可以利用 MapReduce 框架默认的 HashPartitioner 类完成 Shuffle 过程,将相同单词的所有记录发送给同一个 Reducer 进行处理。

image.png

3.3 Reduce 过程

经过上述两个过程后, Reduce 过程只需将相同 key 值的 value 值组合成倒排索引文件所需的格式即可,剩下的事情就可以直接交给 MapReduce 框架进行处理了。

image.png

3.4 程序代码

  • pom文件
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>

  <groupId>com.itcast</groupId>
  <artifactId>invertedIndex</artifactId>
  <version>1.0-SNAPSHOT</version>
  <packaging>jar</packaging>

  <name>invertedIndex</name>
  <url>http://maven.apache.org</url>

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
  </properties>

  <dependencies>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-common</artifactId>
      <version>2.6.4</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-hdfs</artifactId>
      <version>2.6.4</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-client</artifactId>
      <version>2.6.4</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-mapreduce-client-core</artifactId>
      <version>2.6.4</version>
    </dependency>
  </dependencies>

  <build>
    <plugins>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-jar-plugin</artifactId>
        <version>2.4</version>
        <configuration>
          <archive>
            <manifest>
              <addClasspath>true</addClasspath>
              <classpathPrefix>lib/</classpathPrefix>
              <mainClass>cn.itcast.hadoop.mrwc.WordCountDriver</mainClass>
            </manifest>
          </archive>
        </configuration>
      </plugin>
    </plugins>
  </build>

</project>

  • Map程序

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class InvertedIndexMapper extends Mapper<LongWritable, Text, Text, Text>{

    private static Text keyInfo = new Text();// 存储单词和 URL 组合  
    private static final Text valueInfo = new Text("1");// 存储词频,初始化为1  

    @Override  
    protected void map(LongWritable key, Text value, Context context)  
            throws IOException, InterruptedException {  

        String line = value.toString();  
        String[] fields = line.split(" ");// 得到字段数组  

        FileSplit fileSplit = (FileSplit) context.getInputSplit();// 得到这行数据所在的文件切片  
        String fileName = fileSplit.getPath().getName();// 根据文件切片得到文件名  

        for (String field : fields) {  
            // key值由单词和URL组成,如“MapReduce:file1”  
            keyInfo.set(field + ":" + fileName);  
            context.write(keyInfo, valueInfo);  
        }  
    }  

}

  • combine程序

import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class InvertedIndexCombiner extends Reducer<Text, Text, Text, Text>{

    private static Text info = new Text();  

    // 输入: <MapReduce:file3 {1,1,...}>  
    // 输出:<MapReduce file3:2>  
    @Override  
    protected void reduce(Text key, Iterable<Text> values, Context context)  
            throws IOException, InterruptedException {  
        int sum = 0;// 统计词频  
        for (Text value : values) {  
            sum += Integer.parseInt(value.toString());  
        }  

        int splitIndex = key.toString().indexOf(":");  
        // 重新设置 value 值由 URL 和词频组成  
        info.set(key.toString().substring(splitIndex + 1) + ":" + sum);  
        // 重新设置 key 值为单词  
        key.set(key.toString().substring(0, splitIndex));  

        context.write(key, info);  
    }  

}

  • reduce程序

import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class InvertedIndexReducer extends Reducer<Text, Text, Text, Text>{
    private static Text result = new Text();  

    // 输入:<MapReduce file3:2>  
    // 输出:<MapReduce file1:1;file2:1;file3:2;>  
    @Override  
    protected void reduce(Text key, Iterable<Text> values, Context context)  
            throws IOException, InterruptedException {  
        // 生成文档列表  
        String fileList = new String();  
        for (Text value : values) {  
            fileList += value.toString() + ";";  
        }  

        result.set(fileList);  
        context.write(key, result);  
    }  

}

  • 主程序

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class InvertedIndexRunner {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        job.setJarByClass(InvertedIndexRunner.class);

        job.setMapperClass(InvertedIndexMapper.class);
        job.setCombinerClass(InvertedIndexCombiner.class);
        job.setReducerClass(InvertedIndexReducer.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        FileInputFormat.setInputPaths(job, new Path("D:\\ziliao\\data\\InvertedIndex\\input"));
        // 指定处理完成之后的结果所保存的位置
        FileOutputFormat.setOutputPath(job, new Path("D:\\ziliao\\data\\InvertedIndex\\output"));

        // 向 yarn 集群提交这个 job
        boolean res = job.waitForCompletion(true);
        System.exit(res ? 0 : 1);
    }

}

按权重排序


/**
 * Created by Administrator on 2018/8/15.
 */
public class FileCount implements Comparable<FileCount> {

    private String filename;
    private long count;

    //按照总流量倒序排
    public int compareTo(FileCount bean) {
        return bean.count>this.count?1:-1;
    }

    public FileCount(String filename, long count) {
        this.filename = filename;
        this.count = count;
    }

    @Override
    public String toString() {
        return filename + ":" + count;
    }

}

新reduce程序

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class InvertedIndexReducer extends Reducer<Text, Text, Text, Text>{
    private static Text result = new Text();

    // 输入:<MapReduce file3:2>
    // 输出:<MapReduce file1:1;file2:1;file3:2;>
    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {
        // 生成文档列表
        String fileList = new String();
        List<FileCount> FileCountList = new ArrayList<FileCount>();

        for (Text value : values) {
            String[] arr = value.toString().split(":");
            FileCount FileCount = new FileCount(arr[0],Long.parseLong(arr[1]));
            FileCountList.add(FileCount);
        }

        Collections.sort(FileCountList);

        for(FileCount FileCount : FileCountList)
        {
            fileList += FileCount.toString() + ";";
        }
        result.set(fileList);
        context.write(key, result);
    }

相关文章

  • MapReduce 案例之倒排索引

    1. 倒排索引 倒排索引是文档检索系统中最常用的数据结构,被广泛地应用于全文搜索引擎。 它主要是用来存储某个单词(...

  • MapReduce 案例之倒排索引

    1. 倒排索引 倒排索引是文档检索系统中最常用的数据结构,被广泛地应用于全文搜索引擎。 它主要是用来存储某个单词(...

  • Mapreduce案例之倒排索引

    1.数据准备 2.上传HDFS 3.执行Mapreduce分布式并行计算 3.1业务逻辑处理。 业务理解:通俗理解...

  • MapReduce 案例之倒排索引

    1. 倒排索引 倒排索引是文档检索系统中最常用的数据结构,被广泛地应用于全文搜索引擎。 它主要是用来存储某个单词(...

  • MapReduce 之倒排索引

    倒排索引 介绍: 即是 统计每篇文章 每个单词出现的次数,以此达到在搜索引擎中 搜索关键字,检索出出现关键字 最多...

  • MapReduce之倒排索引类应用

    应用需求 通常在数据文件中包含大量的单词,每个单词可能会出现多次,需要根据单词查找文档,这时就需要用到倒排索引。 ...

  • MapReduce基本原理及案例代码分享

    1. 背景知识 起源: Google最早用MapReduce做搜索引擎中的倒排索引,简单来说是: 统计每个词条与文...

  • Elasticsearch(一):概念与基本API

    安装 Elasticsearch 常用 API index Document 倒排索引与分词 倒排索引 倒排索引与...

  • MapReduce算法模式-倒排索引模式

    一、倒排索引 倒排索引,是一种为了提高搜索效率而创建的索引,是一种数据结构。在搜索索引中输入关键词,然后让搜索引擎...

  • ElasticSearch(基础)

    1.1 倒排索引 倒排索引原理?? ElasticSearch使用一种称为 ==倒排索引== 的结构,它适用于快...

网友评论

      本文标题:MapReduce 案例之倒排索引

      本文链接:https://www.haomeiwen.com/subject/ybpgnftx.html