Bootstrapping is a statistical method that uses data resampling with replacement (see: generate_sample_indices) to estimate the robust properties of nearly any statistic. Most commonly, these include standard errors and confidence intervals of a population parameter like a mean, median, correlation coefficient or regression coefficient. Bootstrapping statistics has two attractive attributes:
It is particularly useful when dealing with small sample sizes; It makes no apriori assumption about the distribution of the sample data.
The first rule of data processing is look at your data; the second rule of data processing is understand your data.
使用Bootstaping test方法检验两个相关系数是否具有显著性差异
nBoot = 1000 ; user set
nDim = 0 ; or (/0,0/); dimension numbers corresponding to 'N'
opt = False ; use all default options
BootStrap =bootstrap_correl(x, y, nBoot, nDim, opt)
rBoot = BootStrap[0]; bootstrapped cross-correlations inascendingorder
rBootAvg = BootStrap[1]; Average of the z-transformed bootstrapped cross correlations
rBootStd = BootStrap[2]; Std. deviation(s) of the z-transformed bootstrapped cross correlations
delete(BootStrap) ; no longer needed
rBootLow =bootstrap_estimate(rBoot, 0.025, False) ; 2.5% lower confidence bound
rBootMed =bootstrap_estimate(rBoot, 0.500, False) ; 50.0% median of bootstrapped estimates
绘制直方图:
resr = True
resr@gsnDraw = False
resr@gsnFrame = False
resr@gsnHistogramNumberOfBins = 25
resr@tmXBLabelStride = 4
resr@gsFillColor = "red"
rBoot@long_name = "Bootstrapped cross-correlations"
hstr = gsn_histogram(wks, rBoot ,resr)
(https://www.ncl.ucar.edu/Applications/Scripts/bootstrap_correl_1.ncl)
使用Bootstaping test方法检验两个均方根误差是否具有显著性差异
nBoot = 10000
xBoot =new(nBoot, typeof(x))
do ns=0,nBoot-1 ; generate multiple estimates
iw =generate_sample_indices(N,1) ; indices with replacement
xBoot(ns) =dim_avg_n( x(iw), 0 ) ; compute average
end do
xAvgBoot =dim_avg_n(xBoot,0) ; Averages of bootstrapped samples
xStdBoot =dim_stddev_n(xBoot,0) ; Std Dev " " "
xStdErrBoot = xStdBoot/nBoot ; Std. Error of bootstrapped estimates
ia =dim_pqsort_n(xBoot, 2, 0) ; sort bootstrap means into ascending order
n025 =round(0.025*(nBoot-1),3) ; indices for sorted array
n500 =round(0.500*(nBoot-1),3)
n975 =round(0.975*(nBoot-1),3)
xBoot_025= xBoot(n025) ; 2.5% level
xBoot_500= xBoot(n500) ; 50.0% level (median)
xBoot_975= xBoot(n975) ; 97.5% level
结合上面绘制直方图。
参考:
https://www.ncl.ucar.edu/Applications/bootstrap.shtml
Statistical methods for the analysis of simulated and observed climate data Barbara Hennemuth et al (2013) Applied in projects and institutions dealing with climate change impact and adaptationCSC Report 13 (一本比较好的气候数据统计书)
网友评论