美文网首页
如何使用滑动窗口限流优化网站性能 —— 安企CMS中的实践

如何使用滑动窗口限流优化网站性能 —— 安企CMS中的实践

作者: Fesion | 来源:发表于2024-09-20 16:57 被阅读0次

如何优雅地处理高频访问?

今天早上,我收到了一条客户反馈,说网站打开很卡。我立刻打开服务器进行监控,发现服务器的负载异常高。经过一番排查,我发现在极短的时间内,某个IP以非常规律的频率访问着网站的多个页面。几乎一眼就能看出,网站被恶意的采集工具盯上了。这个IP通过不断请求页面,极大地消耗了服务器资源,导致正常用户无法访问。

面对此类高频请求问题,如果不采取有效的限流措施,网站不仅会出现性能问题,还可能在遭受持续攻击的情况下直接崩溃。于是,我决定着手处理这个问题,设计一套高效的请求限流方案。

传统限流方式面临的挑战

很多现有的限流方案都基于固定时间窗口逐次记录请求时间戳。这些方法虽然能解决部分问题,但在实际项目中有几个明显的缺点:

  1. 固定时间窗口:它按固定时段(如1分钟、5分钟)计数,当时间窗口切换时,所有请求记录清零。这样很容易导致“突发请求”问题:刚刚进入新窗口时,计数器归零,瞬间允许大量请求通过。

  2. 时间戳记录:逐次记录每次请求的时间戳虽然精确,但它要求对每个IP记录大量请求数据,内存占用较大,特别是在高流量网站上,容易出现性能瓶颈。

显然,这些传统方法难以应对我的需求。于是,我开始寻找一种更高效且灵活的方案。

如何选择最优解?

在进行方案对比时,我考虑了以下几种解决方案:

  • 漏桶算法(Leaky Bucket):将请求当成水滴,滴入“桶”中,按照固定速率“漏”出。这个方法虽然能平滑处理请求流量,但对于高频突发的请求依然存在难以控制的情况。

  • 令牌桶算法(Token Bucket):类似于漏桶算法,但它允许在短时间内处理请求的“突发”,只要有足够的“令牌”。然而,令牌桶算法相对复杂,且需要不断生成令牌,管理难度较大。

  • 滑动窗口计数法(Sliding Window):通过动态滑动的时间窗口统计请求,不仅能够灵活应对突发流量,还能保证整个窗口期内的请求量精确计算,避免传统固定时间窗口的缺点。

经过对比,我最终选择了滑动窗口计数法。这种方法既能有效限制请求频率,又不会像记录时间戳那样占用大量内存。

滑动窗口 + 时间桶

为了优化滑动窗口的内存使用,我设计了一个基于时间桶的滑动窗口算法。该方案不需要逐次记录每个请求的时间戳,而是将整个窗口期分成多个“时间桶”,每个桶记录1分钟内的请求总数。通过动态滑动这些桶,我们可以精准控制5分钟内的请求总量。

核心思路:

  1. 滑动窗口:将时间窗口分成5个1分钟的桶,每当新的一分钟开始时,移除最早的1分钟数据,动态计算最新的5分钟请求总量。
  2. 时间桶:每个桶存储该分钟内的请求数量,而不是每个请求的时间戳。这极大降低了内存占用。
  3. IP白名单:同时,我还引入了IP白名单,内网和本地IP无需受到限流控制,确保正常流量不受影响。
  4. UA白名单:同样,我引入了UA白名单,对特定UA的请求不做限流控制,避免了搜索引擎蜘蛛被误伤。

实现代码:

定义数据结构

type VisitInfo struct {
    Buckets     [5]int    // 每分钟一个桶,共5个桶
    LastVisit   int64     // 上次请求的时间戳
    CurrentIdx  int       // 当前时间对应的桶索引
    TotalCount  int       // 当前窗口期内的请求总数
}

var ipVisits = make(map[string]*VisitInfo)
var blockedIPs = make(map[string]time.Time)
var mu sync.Mutex

const WindowSize = 5 * time.Minute  // 窗口大小为5分钟
const MaxRequests = 100             // 5分钟内最大请求次数
const BlockDuration = 1 * time.Hour // 封禁时长为1小时

var whiteListIPs = []string{"127.0.0.1", "192.168.0.0/16"} // 内网和本地IP白名单

func isWhitelisted(ip string) bool {
    for _, cidr := range whiteListIPs {
        _, subnet, _ := net.ParseCIDR(cidr)
        if subnet.Contains(net.ParseIP(ip)) {
            return true
        }
    }
    return false
}

记录请求并清理过期记录

func recordIPVisit(ip string) bool {
    mu.Lock()
    defer mu.Unlock()

    now := time.Now().Unix() // 当前的Unix时间(秒)
    currentMinute := now / 60 % 5 // 当前在5个桶中的索引

    // 检查是否已有该IP的访问记录
    visitInfo, exists := ipVisits[ip]
    if !exists {
        visitInfo = &VisitInfo{
            Buckets:    [5]int{},
            LastVisit:  now,
            CurrentIdx: int(currentMinute),
        }
        ipVisits[ip] = visitInfo
    }

    // 计算时间差,更新桶的状态
    elapsedMinutes := int(now/60 - visitInfo.LastVisit/60)
    
    // 如果时间超过了窗口大小,重置所有桶
    if elapsedMinutes >= 5 {
        visitInfo.Buckets = [5]int{}
        visitInfo.TotalCount = 0
    } else {
        // 依次清理过期的桶
        for i := 1; i <= elapsedMinutes; i++ {
            idx := (visitInfo.CurrentIdx + i) % 5
            visitInfo.TotalCount -= visitInfo.Buckets[idx]
            visitInfo.Buckets[idx] = 0
        }
    }

    // 更新当前桶的索引和计数
    visitInfo.CurrentIdx = int(currentMinute)
    visitInfo.Buckets[visitInfo.CurrentIdx]++
    visitInfo.TotalCount++

    // 更新最后访问时间
    visitInfo.LastVisit = now

    // 检查是否超过最大请求次数
    if visitInfo.TotalCount > MaxRequests {
        return false // 超过最大请求次数,应该封禁
    }

    return true
}

处理请求逻辑

func handleRequest(w http.ResponseWriter, r *http.Request) {
    ip := r.RemoteAddr

    // 检查并跳过白名单和搜索引擎
    if isWhitelisted(ip) || !isUAWhitelisted(r.UserAgent()) {
      ...
    }

    // 检查IP是否已被封禁
    if isIPBlocked(ip) {
        http.Error(w, "Your IP is blocked.", http.StatusForbidden)
        return
    }

    // 记录IP访问,并检查是否超出阈值
    if !recordIPVisit(ip) {
        blockIP(ip)
        http.Error(w, "Too many requests from this IP.", http.StatusTooManyRequests)
        return
    }

    // 正常处理请求
    ...
}

定时清理封禁的IP

func cleanupExpiredRecords() {
    mu.Lock()
    defer mu.Unlock()

    now := time.Now()

    // 清理过期的封禁记录
    for ip, unblockTime := range blockedIPs {
        if now.After(unblockTime) {
            delete(blockedIPs, ip)
        }
    }

    // 清理过期的IP访问记录,这里只回收最后一次访问超过5分钟的记录
    for ip, visitInfo := range ipVisits {
        if now.After(time.Unix(visitInfo.LastVisit, 0).Add(WindowSize)) {
            delete(ipVisits, ip)
        }
    }
}

func startCleanupTask() {
    ticker := time.NewTicker(1 * time.Minute)
    go func() {
        for range ticker.C {
            cleanupExpiredRecords()
        }
    }()
}

当请求到来时,系统首先检查该IP是否在白名单中。如果是白名单IP,直接放行;如果不是,则使用滑动窗口算法动态统计请求数量。

判断UA,如果是搜索引擎蜘蛛,则也同样跳过后续的检查,直接放行。

将滑动窗口集成到安企CMS中

将滑动窗口限流方案集成到安企CMS时,我主要关注以下几点:

  1. 高效性:确保限流逻辑在高并发情况下依然能够快速处理,不影响正常请求。
  2. 灵活性:通过调节时间桶数量和每个桶的大小,适应不同的流量场景。例如,系统默认5分钟内允许100次请求,但可以根据业务需求灵活调整。
  3. 稳定性:对封禁的IP进行1小时的封禁处理,并定期清理过期的封禁记录,确保系统长时间稳定运行。

总结:滑动窗口限流在安企CMS中的应用

通过滑动窗口和时间桶相结合的方法,我成功解决了安企CMS中的恶意请求问题。该方案不仅显著降低了内存开销,还使得系统在高流量下表现稳定。特别是在集成了IP白名单功能后,内网和本地IP用户可以免受限流影响,保证了系统对内部流量的友好性。

优点:

  • 高效:相比逐次记录请求时间戳的传统方法,内存占用和计算量大幅减少。
  • 灵活:可以根据业务需求灵活调整限流策略和封禁时长。
  • 安全:封禁机制有效防止恶意用户对系统发起过多请求,提升整体安全性。

这次滑动窗口限流方案的实践,不仅提升了安企CMS的性能和稳定性,也为其他开发者提供了一个简单易用的高效限流方案。如果你也在开发过程中遇到类似的高频请求问题,希望这篇文章能为你提供一些参考。

相关文章

  • 前端面试必问及加分点---性能优化篇

    如何进行网站性能优化 你有用过哪些前端性能优化的方法? 谈谈性能优化问题 代码层面的优化 前端性能优化最佳实践

  • Web前端性能优化进阶——完结篇

    前言 在之前的文章 如何优化网站性能,提高页面加载速度 中,我们简单介绍了网站性能优化的重要性以及几种网站性能优化...

  • iOS 滑动性能优化

    iOS 滑动性能优化 iOS 滑动性能优化

  • 基于Spring的简单分布式限流Filter

    使用redis做滑动窗口 talk is cheap show me the code 代码 限流配置RateLi...

  • dedecms模板自带的网站地图如何优化?

    dedecms模板自带的网站地图如何优化?使用织梦CMS模板做网站的人应该都知道,在它的robots.txt是屏蔽...

  • 限流框架系列之常见限流算法

    四种常见的限流算法 固定时间窗口限流算法 滑动时间窗口限流算法 令牌桶限流算法 漏桶限流算法 算法比较 算法确定参...

  • 简述http缓存

    简介 网站性能第一优化定律:优先考虑使用缓存优化性能。合理的使用缓存,对网站的性能优化的意义重大。以下对于缓存,都...

  • UIKit性能调优(分享,非原创)

    UIKit性能调优实战讲解 在使用UIKit的过程中,性能优化是永恒的话题。很多人都看过分析优化滑动性能的文章,但...

  • Instruments性能调优实战讲解

    转自bestswifter 在使用UIKit的过程中,性能优化是永恒的话题。很多人都看过分析优化滑动性能的文章,但...

  • 网关限流实例

    描述 限流是指将处理请求数限定在单位时间的阀值内。常用的限流算法固定时间窗口限流算法和滑动时间窗口限流算法。固定时...

网友评论

      本文标题:如何使用滑动窗口限流优化网站性能 —— 安企CMS中的实践

      本文链接:https://www.haomeiwen.com/subject/yetzljtx.html