美文网首页
神经网络识别手写优化(四)

神经网络识别手写优化(四)

作者: skullfang | 来源:发表于2018-01-08 16:08 被阅读0次

<h1>前言</h1>
该 修改的都修改了看看效果吧。
<h1>代码</h1>

# -*- coding: utf-8 -*-
# @Time    : 2017/11/27 上午10:23
# @Author  : SkullFang
# @Email   : yzhang.private@gmail.com
# @File    : FiveDemo.py
# @Software: PyCharm
import random
import json
import sys
import numpy as np
class QuadraticCost(object):
    @staticmethod #静态函数注解
    def fn(a,y):
        return 0.5 * np.linalg.norm(a-y) **2

    @staticmethod
    def delta(z,a,y):
        return (a-y) * sigmoid_prime(z)

class CrossEntropyCost(object):
    """
    交叉商
    """
    @staticmethod
    def fn(a,y):
        return np.sum(np.nan_to_num(-y * np.log(a) - (1-y) * np.log(1-a)))
    @staticmethod
    def delta(z,a,y):
        """
        :param z:无用 
        :param a: 
        :param y: 
        :return: 
        """
        return a-y

class Network(object):
    def __init__(self, sizes,cost=CrossEntropyCost):
        # 网络层数
        self.num_layers = len(sizes)
        # 网络每层神经元个数
        self.sizes = sizes

        self.default_weight_initializer()

        #损失函数
        self.cost=cost

    def default_weight_initializer(self):
        # 初始化每层的偏置
        self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
        # 初始化每层的权重
        self.weights = [np.random.randn(y, x)/np.sqrt(x)
                        for x, y in zip(self.sizes[:-1], self.sizes[1:])]



    def large_weight_initialzer(self):
        # 初始化每层的偏置
        self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
        # 初始化每层的权重
        self.weights = [np.random.randn(y, x)
                        for x, y in zip(sizes[:-1], self.sizes[1:])]


    def feedforward(self, a):
        for b, w in zip(self.biases, self.weights):
            a = sigmoid(np.dot(w, a) + b)
        return a

    # 随机梯度下降
    def SGD(self, training_data, epochs, mini_batch_size, eta,lmbda,
            test_data=None):
        if test_data: n_test = len(test_data)
        # 训练数据总个数
        n = len(training_data)

        # 开始训练 循环每一个epochs
        for j in xrange(epochs):
            # 洗牌 打乱训练数据
            random.shuffle(training_data)

            # mini_batch
            mini_batches = [training_data[k:k + mini_batch_size]
                            for k in range(0, n, mini_batch_size)]


            # 训练mini_batch
            for mini_batch in mini_batches:
                self.update_mini_batch(mini_batch, eta,lmbda,n)



            # print "Epoch {0} complete".format(j)
            #
            #
            # if test_data:
            #     print "Epoch {0}: {1} / {2}".format(
            #
            #          j, self.evaluate(test_data), n_test)
            print "Epoch %s training complete" % j

            cost = self.total_cost(training_data, lmbda)
            print "Cost on training data: {}".format(cost)
            accuracy = self.accuracy(training_data, convert=True)
            print "Accuracy on training data: {} / {}".format(accuracy, n)

            if test_data:
                cost = self.total_cost(test_data, lmbda, convert=True)
                print "Cost on test data: {}".format(cost)
                accuracy = self.accuracy(test_data)
                print "Accuracy on test data: {} / {}".format(accuracy, len(test_data))

    # 更新mini_batch
    def update_mini_batch(self, mini_batch, eta,lmbda,n):
        # 保存每层偏倒
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]

        # 训练每一个mini_batch
        for x, y in mini_batch:
            delta_nable_b, delta_nabla_w = self.update(x, y)

            # 保存一次训练网络中每层的偏倒
            nabla_b = [nb + dnb for nb, dnb in zip(nabla_b, delta_nable_b)]
            nabla_w = [nw + dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]

        # 更新权重和偏置 Wn+1 = wn - eta * nw
        self.weights = [w -eta*(lmbda/n)*w-(eta / len(mini_batch)) * nw
                        for w, nw in zip(self.weights, nabla_w)]
        self.biases = [b - (eta / len(mini_batch)) * nb
                       for b, nb in zip(self.biases, nabla_b)]


    # 前向传播
    def update(self, x, y):
        # 保存每层偏倒
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]

        activation = x

        # 保存每一层的激励值a=sigmoid(z)
        activations = [x]

        # 保存每一层的z=wx+b
        zs = []
        # 前向传播
        for b, w in zip(self.biases, self.weights):
            # 计算每层的z
            z = np.dot(w, activation) + b

            # 保存每层的z
            zs.append(z)

            # 计算每层的a
            activation = sigmoid(z)

            # 保存每一层的a
            activations.append(activation)

        # 反向更新了
        # 计算最后一层的误差
       # delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1])
        delta=(self.cost).delta(zs[-1],activations[-1],y)
        # 最后一层权重和偏置的倒数
        nabla_b[-1] = delta
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())

        # 倒数第二层一直到第一层 权重和偏置的倒数
        for l in range(2, self.num_layers):
            z = zs[-l]

            sp = sigmoid_prime(z)

            # 当前层的误差
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp

            # 当前层偏置和权重的倒数
            nabla_b[-l] = delta
            nabla_w[-l] = np.dot(delta, activations[-l - 1].transpose())

        return (nabla_b, nabla_w)

    def evaluate(self, test_data):
        test_results = [(np.argmax(self.feedforward(x)), y)
                        for (x, y) in test_data]
        return sum(int(x == y) for (x, y) in test_results)

    def accuracy(self, data,convert=False):
        """
        计算准确率
        :param data: 
        :param convert: 看是不是测试集,因为训练集的标签是10维向量。测试集是数字
        :return: 
        """
        if convert:
            results = [(np.argmax(self.feedforward(x)), np.argmax(y))
                       for (x, y) in data]
        else:
            results = [(np.argmax(self.feedforward(x)), y)
                        for (x, y) in data]
        return sum(int(x == y) for (x, y) in results)

    def total_cost(self,data,lmbda,convert=False):
        """
        计算总损失
        :param data: 
        :param lmbda: 
        :param convert: 
        :return: 
        """
        cost=0.0
        for x,y in data:
            a=self.feedforward(x)
            if convert:
                y= vectorized_result(y)
            cost+=self.cost.fn(a,y)/len(data)

        cost +=0.5*(lmbda/len(data))*sum(np.linalg.norm(w)**2 for w in self.weights)
        return cost



    def cost_derivative(self, output_activation, y):
        return (output_activation - y)

    def save(self,filename):
        """
        模型保存
        :param filename: 文件名 
        :return: 
        """
        data ={ "sizes": self.sizes, #模型结构
                "weights": [w.tolist() for w in self.weights], #tolist转换为列表类型
                "biases": [b.tolist() for b in self.biases],
                "cost": str(self.cost.__name__) #保存一下损失函数
        }
        f=open(filename,"w")
        json.dump(data,f)
        f.close()
def vectorized_result(j):
        """Return a 10-dimensional unit vector with a 1.0 in the j'th position
        and zeroes elsewhere.  This is used to convert a digit (0...9)
        into a corresponding desired output from the neural network.

        """
        e = np.zeros((10, 1))
        e[j] = 1.0
        return e

def load(filename):
    """
    加载模型
    :param filename: 
    :return: 
    """
    f=open(filename,"r")
    data=json.load(f)
    f.close()
    cost=getattr(sys.modules[__name__],data["cost"]) #找对象
    net=Network(data["sizes"],cost=cost)
    net.weights=[np.array(w) for w in data["weights"]]
    net.biases=[np.array(b) for b in data["biases"]]

    return net





def sigmoid(z):
    return 1.0 / (1.0 + np.exp(-z))


def sigmoid_prime(z):
    return sigmoid(z) * (1 - sigmoid(z))


if __name__ == '__main__':
    from ProjectOne import mnist_loader

    traning_data, validation_data, test_data = mnist_loader.load_data_wrapper()

    net = Network([784, 60,10, 10])
    net.SGD(traning_data, 30, 10, 0.5, 5.0,test_data=test_data)

相关文章

网友评论

      本文标题:神经网络识别手写优化(四)

      本文链接:https://www.haomeiwen.com/subject/yfdwbxtx.html