Pascal VOC2012 数据集下载地址:
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
代码
import os
import torch
import xml.etree.ElementTree as ET
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from config import Config
import numpy as np
from PIL import Image
image_transform = transforms.Compose([
transforms.Resize(256),
transforms.RandomCrop(256),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
class VOCDataset(Dataset):
def __init__(self, data_dir, train=True, transform=None):
super(VOCDataset, self).__init__()
# 获取txt文件
self.data_dir = data_dir
if (train):
split = 'trainval'
else:
split = 'val'
id_list_file = os.path.join(self.data_dir, 'ImageSets/Main/{0}.txt'.format(split))
self.ids = [id_.strip() for id_ in open(id_list_file)]
self.transform = transform
def __getitem__(self, item):
id = self.ids[item]
# 解析xml文件得到图片的bbox, label
anno = ET.parse(
os.path.join(self.data_dir, 'Annotations', id + '.xml'))
bbox = []
label = []
for obj in anno.findall('object'):
bndbox_anno = obj.find('bndbox')
box = []
for tag in ('ymin', 'xmin', 'ymax', 'xmax'):
box.append(int(bndbox_anno.find(tag).text) - 1)
bbox.append(box)
name = obj.find('name').text.lower().strip()
label.append(Config.VOC_BBOX_LABEL_NAMES.index(name))
bbox = np.stack(bbox).astype(np.float32)
label = np.stack(label).astype(np.float32)
# 获取对应图片
img_file = os.path.join(self.data_dir, 'JPEGImages', id + '.jpg')
img = Image.open(img_file)
if self.transform:
img = self.transform(img)
if img.ndim == 2:
img = img[np.newaxis]
# (H,W,C)->(C,H,W)
img = img.transpose(2, 0)
return img, bbox, label
def __len__(self):
return len(self.ids)
if __name__ == '__main__':
dataset = VOCDataset(data_dir=Config.voc_data_dir, train=True, transform=image_transform)
data_loader = DataLoader(dataset, batch_size=1)
for idx, (image, bbox, lable) in enumerate(data_loader):
print (bbox)
常量文件 config.py
class Config:
voc_data_dir = 'VOCdevkit/VOC2012'
VOC_BBOX_LABEL_NAMES = (
'aeroplane',
'bicycle',
'bird',
'boat',
'bottle',
'bus',
'car',
'cat',
'chair',
'cow',
'diningtable',
'dog',
'horse',
'motorbike',
'person',
'pottedplant',
'sheep',
'sofa',
'train',
'tvmonitor'
)
网友评论