QuerySet API:
我们通常做查询操作的时候,都是通过模型名字.objects
的方式进行操作。其实模型名字.objects
是一个django.db.models.manager.Manager
对象,而Manager
这个类是一个“空壳”的类,他本身是没有任何的属性和方法的。他的方法全部都是通过Python
动态添加的方式,从QuerySet
类中拷贝过来的。示例图如下:
所以我们如果想要学习ORM
模型的查找操作,必须首先要学会QuerySet
上的一些API
的使用。
返回新的QuerySet的方法:
在使用QuerySet
进行查找操作的时候,可以提供多种操作。比如过滤完后还要根据某个字段进行排序,那么这一系列的操作我们可以通过一个非常流畅的链式调用
的方式进行。比如要从文章表中获取标题为123
,并且提取后要将结果根据发布的时间进行排序,那么可以使用以下方式来完成:
articles = Article.objects.filter(title='123').order_by('create_time')
可以看到order_by
方法是直接在filter
执行后调用的。这说明filter
返回的对象是一个拥有order_by
方法的对象。而这个对象正是一个新的QuerySet
对象。因此可以使用order_by
方法。
那么以下将介绍在那些会返回新的QuerySet
对象的方法。
-
filter
:将满足条件的数据提取出来,返回一个新的QuerySet
。具体的filter
可以提供什么条件查询。请见查询操作章节。 -
exclude
:排除满足条件的数据,返回一个新的QuerySet
。示例代码如下:Article.objects.exclude(title__contains='hello')
以上代码的意思是提取那些标题不包含
hello
的图书。 -
annotate
:给QuerySet
中的每个对象都添加一个使用查询表达式(聚合函数、F表达式、Q表达式、Func表达式等)的新字段。示例代码如下:articles = Article.objects.annotate(author_name=F("author__name"))
以上代码将在每个对象中都添加一个
author__name
的字段,用来显示这个文章的作者的年龄。 -
order_by
:指定将查询的结果根据某个字段进行排序。如果要倒叙排序,那么可以在这个字段的前面加一个负号。示例代码如下:# 根据创建的时间正序排序 articles = Article.objects.order_by("create_time") # 根据创建的时间倒序排序 articles = Article.objects.order_by("-create_time") # 根据作者的名字进行排序 articles = Article.objects.order_by("author__name") # 首先根据创建的时间进行排序,如果时间相同,则根据作者的名字进行排序 articles = Article.objects.order_by("create_time",'author__name')
一定要注意的一点是,多个
order_by
,会把前面排序的规则给打乱,而使用后面的排序方式。比如以下代码:articles = Article.objects.order_by("create_time").order_by("author__name")
他会根据作者的名字进行排序,而不是使用文章的创建时间。
-
values
:用来指定在提取数据出来,需要提取哪些字段。默认情况下会把表中所有的字段全部都提取出来,可以使用values
来进行指定,并且使用了values
方法后,提取出的QuerySet
中的数据类型不是模型,而是在values
方法中指定的字段和值形成的字典:articles = Article.objects.values("title",'content') for article in articles: print(article)
以上打印出来的
article
是类似于{"title":"abc","content":"xxx"}
的形式。
如果在values
中没有传递任何参数,那么将会返回这个恶模型中所有的属性。 -
values_list
:类似于values
。只不过返回的QuerySet
中,存储的不是字典,而是元组。示例代码如下:articles = Article.objects.values_list("id","title") print(articles)
那么在打印
articles
后,结果为<QuerySet [(1,'abc'),(2,'xxx'),...]>
等。
如果在values_list
中只有一个字段。那么你可以传递flat=True
来将结果扁平化。示例代码如下:articles1 = Article.objects.values_list("title") >> <QuerySet [("abc",),("xxx",),...]> articles2 = Article.objects.values_list("title",flat=True) >> <QuerySet ["abc",'xxx',...]>
-
all
:获取这个ORM
模型的QuerySet
对象。 -
select_related
:在提取某个模型的数据的同时,也提前将相关联的数据提取出来。比如提取文章数据,可以使用select_related
将author
信息提取出来,以后再次使用article.author
的时候就不需要再次去访问数据库了。可以减少数据库查询的次数。示例代码如下:article = Article.objects.get(pk=1) >> article.author # 重新执行一次查询语句 article = Article.objects.select_related("author").get(pk=2) >> article.author # 不需要重新执行查询语句了
selected_related
只能用在一对多
或者一对一
中,不能用在多对多
或者多对一
中。比如可以提前获取文章的作者,但是不能通过作者获取这个作者的文章,或者是通过某篇文章获取这个文章所有的标签。 -
prefetch_related
:这个方法和select_related
非常的类似,就是在访问多个表中的数据的时候,减少查询的次数。这个方法是为了解决多对一
和多对多
的关系的查询问题。比如要获取标题中带有hello
字符串的文章以及他的所有标签,示例代码如下:from django.db import connection articles = Article.objects.prefetch_related("tag_set").filter(title__contains='hello') print(articles.query) # 通过这条命令查看在底层的SQL语句 for article in articles: print("title:",article.title) print(article.tag_set.all()) # 通过以下代码可以看出以上代码执行的sql语句 for sql in connection.queries: print(sql)
但是如果在使用
article.tag_set
的时候,如果又创建了一个新的QuerySet
那么会把之前的SQL
优化给破坏掉。比如以下代码:tags = Tag.obejcts.prefetch_related("articles") for tag in tags: articles = tag.articles.filter(title__contains='hello') #因为filter方法会重新生成一个QuerySet,因此会破坏掉之前的sql优化 # 通过以下代码,我们可以看到在使用了filter的,他的sql查询会更多,而没有使用filter的,只有两次sql查询 for sql in connection.queries: print(sql)
那如果确实是想要在查询的时候指定过滤条件该如何做呢,这时候我们可以使用
django.db.models.Prefetch
来实现,Prefetch
这个可以提前定义好queryset
。示例代码如下:tags = Tag.objects.prefetch_related(Prefetch("articles",queryset=Article.objects.filter(title__contains='hello'))).all() for tag in tags: articles = tag.articles.all() for article in articles: print(article) for sql in connection.queries: print('='*30) print(sql)
因为使用了
Prefetch
,即使在查询文章的时候使用了filter
,也只会发生两次查询操作。 -
defer
:在一些表中,可能存在很多的字段,但是一些字段的数据量可能是比较庞大的,而此时你又不需要,比如我们在获取文章列表的时候,文章的内容我们是不需要的,因此这时候我们就可以使用defer
来过滤掉一些字段。这个字段跟values
有点类似,只不过defer
返回的不是字典,而是模型。示例代码如下:articles = list(Article.objects.defer("title")) for sql in connection.queries: print('='*30) print(sql)
在看以上代码的
sql
语句,你就可以看到,查找文章的字段,除了title
,其他字段都查找出来了。当然,你也可以使用article.title
来获取这个文章的标题,但是会重新执行一个查询的语句。示例代码如下:articles = list(Article.objects.defer("title")) for article in articles: # 因为在上面提取的时候过滤了title # 这个地方重新获取title,将重新向数据库中进行一次查找操作 print(article.title) for sql in connection.queries: print('='*30) print(sql)
defer
虽然能过滤字段,但是有些字段是不能过滤的,比如id
,即使你过滤了,也会提取出来。 -
only
:跟defer
类似,只不过defer
是过滤掉指定的字段,而only
是只提取指定的字段。 -
get
:获取满足条件的数据。这个函数只能返回一条数据,并且如果给的条件有多条数据,那么这个方法会抛出MultipleObjectsReturned
错误,如果给的条件没有任何数据,那么就会抛出DoesNotExit
错误。所以这个方法在获取数据的只能,只能有且只有一条。 -
create
:创建一条数据,并且保存到数据库中。这个方法相当于先用指定的模型创建一个对象,然后再调用这个对象的save
方法。示例代码如下:article = Article(title='abc') article.save() # 下面这行代码相当于以上两行代码 article = Article.objects.create(title='abc')
-
get_or_create
:根据某个条件进行查找,如果找到了那么就返回这条数据,如果没有查找到,那么就创建一个。示例代码如下:obj,created= Category.objects.get_or_create(title='默认分类')
如果有标题等于
默认分类
的分类,那么就会查找出来,如果没有,则会创建并且存储到数据库中。
这个方法的返回值是一个元组,元组的第一个参数obj
是这个对象,第二个参数created
代表是否创建的。 -
bulk_create
:一次性创建多个数据。示例代码如下:Tag.objects.bulk_create([ Tag(name='111'), Tag(name='222'), ])
-
count
:获取提取的数据的个数。如果想要知道总共有多少条数据,那么建议使用count
,而不是使用len(articles)
这种。因为count
在底层是使用select count(*)
来实现的,这种方式比使用len
函数更加的高效。 -
first
和last
:返回QuerySet
中的第一条和最后一条数据。 -
aggregate
:使用聚合函数。 -
exists
:判断某个条件的数据是否存在。如果要判断某个条件的元素是否存在,那么建议使用exists
,这比使用count
或者直接判断QuerySet
更有效得多。示例代码如下:if Article.objects.filter(title__contains='hello').exists(): print(True) 比使用count更高效: if Article.objects.filter(title__contains='hello').count() > 0: print(True) 也比直接判断QuerySet更高效: if Article.objects.filter(title__contains='hello'): print(True)
-
distinct
:去除掉那些重复的数据。这个方法如果底层数据库用的是MySQL
,那么不能传递任何的参数。比如想要提取所有销售的价格超过80元的图书,并且删掉那些重复的,那么可以使用distinct
来帮我们实现,示例代码如下:books = Book.objects.filter(bookorder__price__gte=80).distinct()
需要注意的是,如果在
distinct
之前使用了order_by
,那么因为order_by
会提取order_by
中指定的字段,因此再使用distinct
就会根据多个字段来进行唯一化,所以就不会把那些重复的数据删掉。示例代码如下:orders = BookOrder.objects.order_by("create_time").values("book_id").distinct()
那么以上代码因为使用了
order_by
,即使使用了distinct
,也会把重复的book_id
提取出来。 -
update
:执行更新操作,在SQL
底层走的也是update
命令。比如要将所有category
为空的article
的article
字段都更新为默认的分类。示例代码如下:Article.objects.filter(category__isnull=True).update(category_id=3)
注意这个方法走的是更新的逻辑。所以更新完成后保存到数据库中不会执行
save
方法,因此不会更新auto_now
设置的字段。 -
delete
:删除所有满足条件的数据。删除数据的时候,要注意on_delete
指定的处理方式。 -
切片操作:有时候我们查找数据,有可能只需要其中的一部分。那么这时候可以使用切片操作来帮我们完成。
QuerySet
使用切片操作就跟列表使用切片操作是一样的。示例代码如下:books = Book.objects.all()[1:3] for book in books: print(book)
切片操作并不是把所有数据从数据库中提取出来再做切片操作。而是在数据库层面使用
LIMIE
和OFFSET
来帮我们完成。所以如果只需要取其中一部分的数据的时候,建议大家使用切片操作。
什么时候Django
会将QuerySet
转换为SQL
去执行:
生成一个QuerySet
对象并不会马上转换为SQL
语句去执行。
比如我们获取Book
表下所有的图书:
books = Book.objects.all()
print(connection.queries)
我们可以看到在打印connection.quries
的时候打印的是一个空的列表。说明上面的QuerySet
并没有真正的执行。
在以下情况下QuerySet
会被转换为SQL
语句执行:
-
迭代:在遍历
QuerySet
对象的时候,会首先先执行这个SQL
语句,然后再把这个结果返回进行迭代。比如以下代码就会转换为SQL
语句:for book in Book.objects.all(): print(book)
-
使用步长做切片操作:
QuerySet
可以类似于列表一样做切片操作。做切片操作本身不会执行SQL
语句,但是如果如果在做切片操作的时候提供了步长,那么就会立马执行SQL
语句。需要注意的是,做切片后不能再执行filter
方法,否则会报错。 -
调用
len
函数:调用len
函数用来获取QuerySet
中总共有多少条数据也会执行SQL
语句。 -
调用
list
函数:调用list
函数用来将一个QuerySet
对象转换为list
对象也会立马执行SQL
语句。 -
判断:如果对某个
QuerySet
进行判断,也会立马执行SQL
语句。
网友评论