方法一.Bonferroni
“最简单严厉的方法”
例如,如果检验1000次,我们就将阈值设定为5%/ 1000 = 0.00005;即使检验1000次,犯错误的概率还是保持在N×1000 = 5%。最终使得预期犯错误的次数不到1次,抹杀了一切假阳性的概率。
该方法虽然简单,但是检验过于严格,导致最后找不到显著表达的蛋白(假阴性)。
阈值为:0.05/检验次数
方法二.FalseDiscovery Rate
“比较温和的方法校正P值”
FDR(假阳性率)错误控制法是Benjamini于1995年提出的一种方法,基本原理是通过控制FDR值来决定P值的值域。相对Bonferroni来说,FDR用比较温和的方法对p值进行了校正。其试图在假阳性和假阴性间达到平衡,将假/真阳性比例控制到一定范围之内。例如,如果检验1000次,我们设定的阈值为0.05(5%),那么无论我们得到多少个差异蛋白,这些差异蛋白出现假阳性的概率保持在5%之内,这就叫FDR<5%。
那么我们怎么从p value 来估算FDR呢,人们设计了几种不同的估算模型。其中使用最多的是Benjamini and Hochberg方法,简称BH法。虽然这个估算公式并不够完美,但是也能解决大部分的问题,主要还是简单好用!
矫正p值为: p*检验次数/从小到大排名
FDR的计算方法
除了可以使用excel的BH计算方法外,对于较大的数据,我们推荐使用R命令p.adjust。
p.adjust(p,method=”fdr”,n=length(p))
网友评论