美文网首页
论文阅读笔记1

论文阅读笔记1

作者: 幽并游侠儿_1425 | 来源:发表于2020-07-08 14:00 被阅读0次

文章标题:Importance Estimation for Neural Network Pruning

[link](Importance Estimation for Neural Network Pruning)

阅读目的:

  1. 查看其中的prune算法:
    (1)是weight prune还是neuron prune
    (2)选择significant的方法
  2. 实验参数和实验效果,主要是对inference time的影响

阅读笔记:

  1. 摘要部分
  • neuron (filter) prune
  • using the first and second- order Taylor expansions to approximate a filter’s contribution
  1. 提出质疑
    传统观点:Many of them rely on the belief that the magnitude of a weight and its importance are strongly correlated.
    质疑:We question this belief and observe a significant gap in correlation between weight-based pruning decisions and empirically optimal one-step decisions(经验最优的一步决策) – a gap which our greedy criterion aims to fill
    新提出的标准:
    We define the importance as the squared change in loss induced by removing a specific filter from the network.
    新标准执行时遇到的问题:
    computing the exact importance is extremely expensive for large networks
    解决办法:
    approximate it with a Taylor expansion , resulting in a criterion computed from parameter gradients readily available during standard training
  2. 算法部分
    输入为trained network,prune,再retrain with a small learning rate
    (1)For each minibatch, we compute parameter gradients and update network weights by gradient descent. (即,梯度下降)
    We also compute the importance of each neuron (or filter) using the gradient averaged over the minibatch (原文献中有介绍,见下图中的公式7,8)


    公式介绍图

    (2)After a predefined number of minibatches, we average the importance score of each neuron (or filter) over the
    of minibatches, and remove the N neurons with the
    smallest importance scores
    4.实验效果
    对比了neurons pruned vs loss
    在补充材料中,we evaluate inference speed of pruned.

  • Pruning results in inference speed reduction, especially for the larger batch size
  • Pruning skip connections results in higher time reduction compared to pruning all layers.
    inference time experiment result

相关文章

网友评论

      本文标题:论文阅读笔记1

      本文链接:https://www.haomeiwen.com/subject/yizqcktx.html