chan的理解
chan用于协程间通信,结构体如下,代码位置为go/src/runtime/chan.go
type hchan struct {
qcount uint // total data in the queue;队列中的数据数量
dataqsiz uint // size of the circular queue;chan的大小
buf unsafe.Pointer // points to an array of dataqsiz elements;存放数据的buffer
elemsize uint16 //存放的数据类型大小
closed uint32//是否已关闭
elemtype *_type // element type;存放数据的类型
sendx uint // send index;发送数据时的buf位置
recvx uint // receive index;读取数据时的buf位置
recvq waitq // list of recv waiters;读取数据引起阻塞的go协程队列
sendq waitq // list of send waiters;写数据引起阻塞的go协程队列
// lock protects all fields in hchan, as well as several
// fields in sudogs blocked on this channel.
//
// Do not change another G's status while holding this lock
// (in particular, do not ready a G), as this can deadlock
// with stack shrinking.
lock mutex
}
type waitq struct {
first *sudog
last *sudog
}
// sudog represents a g in a wait list, such as for sending/receiving
// on a channel.
//
// sudog is necessary because the g ↔ synchronization object relation
// is many-to-many. A g can be on many wait lists, so there may be
// many sudogs for one g; and many gs may be waiting on the same
// synchronization object, so there may be many sudogs for one object.
//
// sudogs are allocated from a special pool. Use acquireSudog and
// releaseSudog to allocate and free them.
type sudog struct {
// The following fields are protected by the hchan.lock of the
// channel this sudog is blocking on. shrinkstack depends on
// this.
g *g//协程
selectdone *uint32 // CAS to 1 to win select race (may point to stack)
next *sudog//下一个
prev *sudog
elem unsafe.Pointer // data element (may point to stack)
// The following fields are never accessed concurrently.
// waitlink is only accessed by g.
acquiretime int64
releasetime int64
ticket uint32
waitlink *sudog // g.waiting list
c *hchan // channel
}
从结构定义可以看出,chan包含了2个部分:1是读写协程等待队列、数据存储buffer。
chan操作
chan包含4类操作:make、read、write以及close
make chan
c := make(chan int,2)
编译器会将make语句最终,指向
func reflect_makechan(t *chantype, size int64) *hchan {
return makechan(t, size)
}
可以看得出来,返回的是一个hchan的指针
下面是实际的makechan的代码
func makechan(t *chantype, size int64) *hchan {
elem := t.elem
// compiler checks this but be safe.
if elem.size >= 1<<16 {
throw("makechan: invalid channel element type")
}
if hchanSize%maxAlign != 0 || elem.align > maxAlign {
throw("makechan: bad alignment")
}
if size < 0 || int64(uintptr(size)) != size || (elem.size > 0 && uintptr(size) > (_MaxMem-hchanSize)/elem.size) {
panic(plainError("makechan: size out of range"))
}
var c *hchan
if elem.kind&kindNoPointers != 0 || size == 0 {
// Allocate memory in one call.
// Hchan does not contain pointers interesting for GC in this case:
// buf points into the same allocation, elemtype is persistent.
// SudoG's are referenced from their owning thread so they can't be collected.
// TODO(dvyukov,rlh): Rethink when collector can move allocated objects.
c = (*hchan)(mallocgc(hchanSize+uintptr(size)*elem.size, nil, true))
if size > 0 && elem.size != 0 {
c.buf = add(unsafe.Pointer(c), hchanSize)
} else {
// race detector uses this location for synchronization
// Also prevents us from pointing beyond the allocation (see issue 9401).
c.buf = unsafe.Pointer(c)
}
} else {
c = new(hchan)
c.buf = newarray(elem, int(size))
}
c.elemsize = uint16(elem.size)
c.elemtype = elem
c.dataqsiz = uint(size)
if debugChan {
print("makechan: chan=", c, "; elemsize=", elem.size, "; elemalg=", elem.alg, "; dataqsiz=", size, "\n")
}
return c
}
1、检查待存的数据类型大小,大于1<<16时异常
2、检查内存对齐(降低寻址次数,提高内存读取速度),大于最大的内存对齐字节数时,panic
3、检查传入的size大小,大于堆可分配的最大内存时,panic,可以看出chan是在堆里面分配内存的
if size < 0 || int64(uintptr(size)) != size || (elem.size > 0 && uintptr(size) > (_MaxMem-hchanSize)/elem.size) {
panic(plainError("makechan: size out of range"))
}
4、存储元素的类型没有指针类型或者chan的大小为0时,分配连续地址空间(为什么这么做呢?),注意到size为0时,是不会为chan的buf malloc内存空间的
// Allocate memory in one call.
// Hchan does not contain pointers interesting for GC in this case:
// buf points into the same allocation, elemtype is persistent.
// SudoG's are referenced from their owning thread so they can't be collected.
// TODO(dvyukov,rlh): Rethink when collector can move allocated objects.
c = (*hchan)(mallocgc(hchanSize+uintptr(size)*elem.size, nil, true))
if size > 0 && elem.size != 0 {
c.buf = add(unsafe.Pointer(c), hchanSize)
} else {
// race detector uses this location for synchronization
// Also prevents us from pointing beyond the allocation (see issue 9401).
c.buf = unsafe.Pointer(c)
}
send 即 c <- e
首先看chan为nil的情况
if c == nil {
if !block {
return false
}
gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")
}
chan为nil时,调用gopark进入休眠状态,并使用unlockf来唤醒,如下
// Puts the current goroutine into a waiting state and calls unlockf.
// If unlockf returns false, the goroutine is resumed.
// unlockf must not access this G's stack, as it may be moved between
// the call to gopark and the call to unlockf.
func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason string, traceEv byte, traceskip int) {
mp := acquirem()
gp := mp.curg
status := readgstatus(gp)
if status != _Grunning && status != _Gscanrunning {
throw("gopark: bad g status")
}
mp.waitlock = lock
mp.waitunlockf = *(*unsafe.Pointer)(unsafe.Pointer(&unlockf))
gp.waitreason = reason
mp.waittraceev = traceEv
mp.waittraceskip = traceskip
releasem(mp)
// can't do anything that might move the G between Ms here.
mcall(park_m)
}
注意到调用gopark时传入的unlockf为nil,会被一直休眠,recv也是同样的做法,因此没有初始化进行同时读写时,会引起死锁
var c chan int
go func() {
<-c
}()
c <- 1
这段代码执行会报错:fatal error: all goroutines are asleep - deadlock!
疑问的一段?
// Fast path: check for failed non-blocking operation without acquiring the lock.
//
// After observing that the channel is not closed, we observe that the channel is
// not ready for sending. Each of these observations is a single word-sized read
// (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
// Because a closed channel cannot transition from 'ready for sending' to
// 'not ready for sending', even if the channel is closed between the two observations,
// they imply a moment between the two when the channel was both not yet closed
// and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
//
// It is okay if the reads are reordered here: if we observe that the channel is not
// ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first observation.
if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||
(c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {
return false
}
channel关闭后,再send时,直接panic
if c.closed != 0 {
unlock(&c.lock)
panic(plainError("send on closed channel"))
}
读等待队列中,有协程等待,这个时候直接将send的数据memmove到协程中elem元素中;goready唤醒阻塞的协程
if sg := c.recvq.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
send(c, sg, ep, func() { unlock(&c.lock) })
return true
}
// send processes a send operation on an empty channel c.
// The value ep sent by the sender is copied to the receiver sg.
// The receiver is then woken up to go on its merry way.
// Channel c must be empty and locked. send unlocks c with unlockf.
// sg must already be dequeued from c.
// ep must be non-nil and point to the heap or the caller's stack.
func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func()) {
if raceenabled {
if c.dataqsiz == 0 {
racesync(c, sg)
} else {
// Pretend we go through the buffer, even though
// we copy directly. Note that we need to increment
// the head/tail locations only when raceenabled.
qp := chanbuf(c, c.recvx)
raceacquire(qp)
racerelease(qp)
raceacquireg(sg.g, qp)
racereleaseg(sg.g, qp)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
}
}
if sg.elem != nil {
sendDirect(c.elemtype, sg, ep)
sg.elem = nil
}
gp := sg.g
unlockf()
gp.param = unsafe.Pointer(sg)
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
goready(gp, 4)
}
队列buf没有满,将send数据写入chan的buf中,并send指针后移,以及chan buf数据量增加
if c.qcount < c.dataqsiz {
// Space is available in the channel buffer. Enqueue the element to send.
qp := chanbuf(c, c.sendx)
if raceenabled {
raceacquire(qp)
racerelease(qp)
}
typedmemmove(c.elemtype, qp, ep)
c.sendx++
if c.sendx == c.dataqsiz {
c.sendx = 0
}
c.qcount++
unlock(&c.lock)
return true
}
chan队列已满,阻塞;将本协程放入等待协程中,同时休眠此协程
// Block on the channel. Some receiver will complete our operation for us.
gp := getg()
mysg := acquireSudog()
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
// No stack splits between assigning elem and enqueuing mysg
// on gp.waiting where copystack can find it.
mysg.elem = ep
mysg.waitlink = nil
mysg.g = gp
mysg.selectdone = nil
mysg.c = c
gp.waiting = mysg
gp.param = nil
c.sendq.enqueue(mysg)
goparkunlock(&c.lock, "chan send", traceEvGoBlockSend, 3)
send协程阻塞被唤醒:channel被close,panic;取到数据,正常返回
// someone woke us up.
if mysg != gp.waiting {
throw("G waiting list is corrupted")
}
gp.waiting = nil
if gp.param == nil {
if c.closed == 0 {
throw("chansend: spurious wakeup")
}
panic(plainError("send on closed channel"))
}
gp.param = nil
if mysg.releasetime > 0 {
blockevent(mysg.releasetime-t0, 2)
}
mysg.c = nil
releaseSudog(mysg)
return true
send 流程小结
chan为nil时,阻塞协程
chan closed时,panic
send有三种情况:1、等待队列不为空,直接把数据发给等待协程 ;2、chan 的buf还有空间,把数据写入buf;3、buf满了,阻塞住协程,并放入chan的等待写队列
recv 也就是e := <-c
与send类似,整体流程如下:
chan为nil时,gopark阻塞协程
chan closed时,返回chan数据类型的默认值,此时非阻塞
if c.closed != 0 && c.qcount == 0 {
if raceenabled {
raceacquire(unsafe.Pointer(c))
}
unlock(&c.lock)
if ep != nil {
typedmemclr(c.elemtype, ep)
}
return true, false
}
recv有三种情况:1、等待队列不为空,直接从等待写协程 取出数据,并唤醒等待协程;2、chan 的buf还有数据,从buf中读取数据;3、buf空,阻塞住协程,并放入chan的等待读队列
close
设置chan关闭标志位,closed=1;取出chan的所有读写等待协程,改为就绪态,其中send协程,会panic;而recv协程会返回没有被赋值的数据
func closechan(c *hchan) {
if c == nil {
panic(plainError("close of nil channel"))
}
lock(&c.lock)
if c.closed != 0 {
unlock(&c.lock)
panic(plainError("close of closed channel"))
}
if raceenabled {
callerpc := getcallerpc(unsafe.Pointer(&c))
racewritepc(unsafe.Pointer(c), callerpc, funcPC(closechan))
racerelease(unsafe.Pointer(c))
}
c.closed = 1
var glist *g
// release all readers
for {
sg := c.recvq.dequeue()
if sg == nil {
break
}
if sg.elem != nil {
typedmemclr(c.elemtype, sg.elem)
sg.elem = nil
}
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
gp := sg.g
gp.param = nil
if raceenabled {
raceacquireg(gp, unsafe.Pointer(c))
}
gp.schedlink.set(glist)
glist = gp
}
// release all writers (they will panic)
for {
sg := c.sendq.dequeue()
if sg == nil {
break
}
sg.elem = nil
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
gp := sg.g
gp.param = nil
if raceenabled {
raceacquireg(gp, unsafe.Pointer(c))
}
gp.schedlink.set(glist)
glist = gp
}
unlock(&c.lock)
// Ready all Gs now that we've dropped the channel lock.
for glist != nil {
gp := glist
glist = glist.schedlink.ptr()
gp.schedlink = 0
goready(gp, 3)
}
}
网友评论