二叉树

作者: Drew_MyINTYRE | 来源:发表于2021-06-16 08:51 被阅读0次

A 节点就是 B 节点的父节点,B 节点是 A 节点的子节点。B、C、D 这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点。我们把没有父节点的节点叫做根节点,也就是图中的节点 E。我们把没有子节点的节点叫做叶子节点或者叶节点,比如图中的 G、H、I、J、K、L 都是叶子节点。

1.jpg

高度,深度,层

“高度”这个概念,其实就是从下往上度量,“深度”这个概念在生活中是从上往下度量的,“层数”跟深度的计算类似,不过,计数起点是 1,也就是说根节点位于第 1 层。

2.jpg

二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。

3.jpg

编号 2 的二叉树中,叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫做满二叉树。

编号 3 的二叉树中,叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫做完全二叉树

对于数组存储的二叉树有这么一个规律:

如果节点 X 存储在数组中下标为 i 的位置,下标为 2 * i 的位置存储的就是左子节点,下标为 2 * i + 1 的位置存储的就是右子节点。反过来,下标为 i/2 的位置存储就是它的父节点。通过这种方式,我们只要知道根节点存储的位置(一般情况下,为了方便计算子节点,根节点会存储在下标为 1 的位置),这样就可以通过下标计算,把整棵树都串起来。

结论:如果某棵二叉树是一棵完全二叉树,那用数组存储无疑是最节省内存的一种方式。见下图:

一棵完全二叉树,所以仅仅“浪费”了一个下标为 0 的存储位置。

4.jpg

如果是非完全二叉树,其实会浪费比较多的数组存储空间。

5.jpg

如果某棵二叉树是一棵完全二叉树,那用数组存储无疑是最节省内存的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。堆其实就是一种完全二叉树,最常用的存储方式就是数组。

总结

数组顺序存储的方式比较适合完全二叉树,其他类型的二叉树用数组存储会比较浪费存储空间。

二叉树的遍历

1.jpg

从前面画的前、中、后序遍历的顺序图,可以看出来,每个节点最多会被访问两次,所以遍历操作的时间复杂度,跟节点的个数 n 成正比,也就是说二叉树遍历的时间复杂度是 O(n)

相关文章

  • 数据结构与算法-二叉树02

    二叉树的定义 二叉树的特点 二叉树的五中基本形态 其他二叉树 斜二叉树 满二叉树 完全二叉树图片.png满二叉树一...

  • 二叉树

    二叉树 高度 深度真二叉树 满二叉树 完全二叉树 二叉树遍历前序 中序 后序层序遍历 翻转二叉树 递归法...

  • 二叉树 基础操作

    二叉树的使用 二叉树结构 先序创建二叉树 DFS 先序遍历二叉树 中序遍历二叉树 后序遍历二叉树 BFS 层次遍历...

  • 树与二叉树

    **树 ** 二叉树 满二叉树 完全二叉树 三种遍历方法 树与二叉树的区别 二叉查找树 平衡二叉树 红黑二叉树

  • 二叉树的宽度优先搜索(层次遍历,BFS)

    二叉树结构: 二叉树宽度优先搜索: 按照二叉树的层数依次从左到右访问二叉树的节点;例如:给定一个二叉树: 按照宽度...

  • 剑指 offer:39、平衡二叉树

    39. 平衡二叉树 题目描述 输入一棵二叉树,判断该二叉树是否是平衡二叉树。 解题思路: 平衡二叉树:Wiki:在...

  • Algorithm小白入门 -- 二叉树

    二叉树二叉树构造二叉树寻找重复子树 1. 二叉树 基本二叉树节点如下: 很多经典算法,比如回溯、动态规划、分治算法...

  • 14-树&二叉树&真二叉树&满二叉树

    一、树 二、二叉树 三、真二叉树 四、满二叉树

  • 二叉树的应用

    完美二叉树(满二叉树) 除了最下一层的节点外,每层节点都有两个子节点的二叉树为满二叉树 完全二叉树 除二叉树最后一...

  • 12.树Tree(2)

    目录:1.二叉树的基本概念2.二叉树的性质3.二叉树的创建4.二叉树的遍历 1.二叉树的基本概念 2.二叉树的性质...

网友评论

      本文标题:二叉树

      本文链接:https://www.haomeiwen.com/subject/yngheltx.html