Sklearn各分类算法实现

作者: 文哥的学习日记 | 来源:发表于2017-10-04 17:29 被阅读299次

1、逻辑回归

使用逻辑回归来实现对癌症患者的分类:

import pandas as pd
import numpy as np

column_name = ['Sample code number','Clump Thickness','Uniformity of Cell Size','Uniformity of Cell Shape','Marginal Adhesion',
              'Single Epithelial Cell Size','Bare Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class']

data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data'
                  ,names = column_name)
#将?替换为标准缺失值表示
data = data.replace(to_replace='?',value=np.nan)
#丢弃带有缺失值的数据
data = data.dropna(how='any')
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(data[column_name[1:10]],data[column_name[10]],test_size=0.25,random_state=33)

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
#标准化数据,保证每个维度的特征数据方差为1,均值为0,使得预测结果不会被某些维度过大的特征值而主导
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
#初始化LogisticRegression和SgdClassifier
lr = LogisticRegression()
sgdc = SGDClassifier()

#调用LogisticRegression的fit函数来训练模型,并使用predict函数进行预测
lr.fit(X_train,y_train)
lr_y_predict = lr.predict(X_test)
#调用SGDClassifier中的fit函数来训练模型,并用predict函数来进行预测
sgdc.fit(X_train,y_train)
sgdc_y_predict = sgdc.predict(X_test)

from sklearn.metrics import classification_report
#利用score方法计算准确性
print('Accruacy of LR Classifier:',lr.score(X_test,y_test))
#利用classification_report模块获得召回率,精确率和F1值三个指标
print(classification_report(y_test,lr_y_predict,target_names=['Benign','Malignant']))

print('Accruacy of SGD Classifier',sgdc.score(X_test,y_test))
print(classification_report(y_test,sgdc_y_predict,target_names=['Benign','Maligant']))

2、支持向量机

本节使用支持向量机实现对手写数字的分类

from sklearn.datasets import load_digits
digits= load_digits()
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(digits.data,digits.target,test_size=0.25,random_state=33)

from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)

lsvc = LinearSVC()
lsvc.fit(X_train,y_train)
y_predict = lsvc.predict(X_test)

from sklearn.metrics import classification_report
print('The Accruacy of Linear SVC is',lsvc.score(X_test,y_test))
print (classification_report(y_test,y_predict,target_names=digits.target_names.astype(str)))

3、朴素贝叶斯

本节使用朴素贝叶斯实现对20类新闻的分类

from sklearn.datasets import fetch_20newsgroups
news = fetch_20newsgroups(subset='all')
print(len(news.data))
print(news.data[0])

from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(news.data,news.target,test_size=0.25,random_state=33)
#文本特征向量转化模块
from sklearn.feature_extraction.text import CountVectorizer
vec = CountVectorizer()
X_train = vec.fit_transform(X_train)
X_test = vec.transform(X_test)

from sklearn.naive_bayes import MultinomialNB
mnb = MultinomialNB()
mnb.fit(X_train,y_train)
y_predict = mnb.predict(X_test)
from sklearn.metrics import classification_report
print('The accruacy of Naive Bayes is ',mnb.score(X_test,y_test))
print(classification_report(y_test,y_predict,target_names=news.target_names))

4、K近邻

本文使用K近邻算法实现对鸢尾花数据的分类

from sklearn.datasets import load_iris
iris=load_iris()
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,test_size=0.25,random_state=33)
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)

knc = KNeighborsClassifier()
knc.fit(X_train,y_train)
y_predict = knc.predict(X_test)

print('The Accruacy of kNN is',knc.score(X_test,y_test))
from sklearn.metrics import classification_report
print(classification_report(y_test,y_predict,target_names=iris.target_names))

5、决策树

本文使用决策树对泰坦尼克号乘客能否逃生进行分类:

titanic = pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')

X = titanic[['pclass','age','sex']]
y = titanic['survived']
X['age'].fillna(X['age'].mean(),inplace=True)

from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.25,random_state=33)
#将非数值型数据转换为数值型数据
from sklearn.feature_extraction import DictVectorizer
vec = DictVectorizer(sparse=False)
X_train = vec.fit_transform(X_train.to_dict(orient='record'))
print(vec.feature_names_)
X_test = vec.transform(X_test.to_dict(orient='record'))

from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier()
dtc.fit(X_train,y_train)
y_predict = dtc.predict(X_test)
from sklearn.metrics import classification_report
print (dtc.score(X_test,y_test))
print(classification_report(y_predict,y_test,target_names=['died','survivied']))

6、集成模型-随机森林和GBDT

仍然使用上节的泰坦尼克号数据:

titanic = pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')

X = titanic[['pclass','age','sex']]
y = titanic['survived']
X['age'].fillna(X['age'].mean(),inplace=True)

from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.25,random_state=33)
#将非数值型数据转换为数值型数据
from sklearn.feature_extraction import DictVectorizer
vec = DictVectorizer(sparse=False)
X_train = vec.fit_transform(X_train.to_dict(orient='record'))
print(vec.feature_names_)
X_test = vec.transform(X_test.to_dict(orient='record'))

from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(X_train,y_train)
rfc_y_pred = rfc.predict(X_test)
from sklearn.ensemble import GradientBoostingClassifier
gbc = GradientBoostingClassifier()
gbc.fit(X_train,y_train)
gbc_y_pred = gbc.predict(X_test)

from sklearn.metrics import classification_report
print('The accuracy of randomforest is ',rfc.score(X_test,y_test))
print(classification_report(rfc_y_pred,y_test))
print('The accuracy of gbdt is',gbc.score(X_test,y_test))
print(classification_report(gbc_y_pred,y_test))

7、XGBoost

有关xgboost在MAC上的安装,参考简书:http://www.jianshu.com/p/4cfa41ccf022

titanic = pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')
titanic.head()
titanic.info()
X = titanic[['pclass','age','sex']]
y = titanic['survived']
X['age'].fillna(X['age'].mean(),inplace=True)
X.info()
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.25,random_state=33)
#将非数值型数据转换为数值型数据
from sklearn.feature_extraction import DictVectorizer
vec = DictVectorizer(sparse=False)
X_train = vec.fit_transform(X_train.to_dict(orient='record'))
print(vec.feature_names_)
X_test = vec.transform(X_test.to_dict(orient='record'))
X_train[:2]

from xgboost import XGBClassifier
xgbc = XGBClassifier()
xgbc.fit(X_train,y_train)
print("The accuracy of xgboost is" ,xgbc.score(X_test,y_test))

相关文章

  • sklearn的常用函数以及参数——1. 分类算法

    sklearn可实现的函数或者功能有以下几种: 分类算法回归算法聚类算法降维算法模型优化文本预处理其中分类算法和回...

  • scikit_learn (sklearn)功能小结[转载]

    总的来说,Sklearn可实现的函数或功能可分为以下几个方面: 分类算法 回归算法 聚类算法 降维算法 文本挖掘算...

  • Sklearn各分类算法实现

    1、逻辑回归 使用逻辑回归来实现对癌症患者的分类: 2、支持向量机 本节使用支持向量机实现对手写数字的分类 3、朴...

  • 朴素贝叶斯分类算法的sklearn实现

    1、背景 《机器学习实战》当中,用python根据贝叶斯公式实现了基本的分类算法。现在来看看用sklearn,如何...

  • 反向传播实现

    sklearn源码中反向传播算法的实现sklearn/neural_network/multilayer_perc...

  • 01-25

    今天看的是Sklearn工具进行数据挖掘算法的运行。Sklearn自身含有决策树分类器DecisionTreeCl...

  • 3.sklearn_classification

    1 Sklearn分类学习算法一览 1.1 机器学习算法选择 1.2 scikit-learn初探 scikit-...

  • 聚类算法k-means

    聚类算法 聚类算法 是 无监督学习 聚类算法有特征,无标签,是无监督分类。 sklearn 聚类模块 cluste...

  • Sklearn常用集成算法实践

    前言 用Sklearn常用的Ensemble算法对当当热销书评论进行分类实践。 关于集成算法概念可以看这篇文章 总...

  • 机器学习系列(七)——模型性能评测·准确率

    笔者的机器学习系列将对各机器学习算法都进行自己的算法编写用于模拟sklearn实现方式,借此更好地理解算法原理和s...

网友评论

    本文标题:Sklearn各分类算法实现

    本文链接:https://www.haomeiwen.com/subject/ypwnextx.html