美文网首页
今日学术视野(2019.2.20)

今日学术视野(2019.2.20)

作者: ZQtGe6 | 来源:发表于2019-02-20 05:19 被阅读107次

    cs.AI - 人工智能
    cs.CL - 计算与语言
    cs.CV - 机器视觉与模式识别
    cs.CY - 计算与社会
    cs.DC - 分布式、并行与集群计算
    cs.DS - 数据结构与算法
    cs.GR - 计算机图形学
    cs.GT - 计算机科学与博弈论
    cs.HC - 人机接口
    cs.IR - 信息检索
    cs.IT - 信息论
    cs.LG - 自动学习
    cs.LO - 计算逻辑
    cs.NE - 神经与进化计算
    cs.RO - 机器人学
    cs.SE - 软件工程
    cs.SI - 社交网络与信息网络
    eess.IV - 图像与视频处理
    eess.SP - 信号处理
    math.CO - 组合数学
    math.DG - 微分几何
    math.OC - 优化与控制
    math.PR - 概率
    math.ST - 统计理论
    physics.soc-ph - 物理学与社会
    q-bio.NC - 神经元与认知
    stat.AP - 应用统计
    stat.CO - 统计计算
    stat.ME - 统计方法论
    stat.ML - (统计)机器学习

    • [cs.AI]A new Potential-Based Reward Shaping for Reinforcement Learning Agent
    • [cs.AI]Evolutionary Multitasking for Semantic Web Service Composition
    • [cs.AI]Learning to Infer Program Sketches
    • [cs.AI]Re-determinizing Information Set Monte Carlo Tree Search in Hanabi
    • [cs.AI]SCEF: A Support-Confidence-aware Embedding Framework for Knowledge Graph Refinement
    • [cs.AI]Timeline-based planning: Expressiveness and Complexity
    • [cs.CL]A Comparative Study of Feature Selection Methods for Dialectal Arabic Sentiment Classification Using Support Vector Machine
    • [cs.CL]A Fully Differentiable Beam Search Decoder
    • [cs.CL]CBOW Is Not All You Need: Combining CBOW with the Compositional Matrix Space Model
    • [cs.CL]Combination of Domain Knowledge and Deep Learning for Sentiment Analysis of Short and Informal Messages on Social Media
    • [cs.CL]Contextual Word Representations: A Contextual Introduction
    • [cs.CL]CruzAffect at AffCon 2019 Shared Task: A feature-rich approach to characterize happiness
    • [cs.CL]Exploring Language Similarities with Dimensionality Reduction Technique
    • [cs.CL]Improving Semantic Parsing for Task Oriented Dialog
    • [cs.CL]Investigating the Effect of Segmentation Methods on Neural Model based Sentiment Analysis on Informal Short Texts in Turkish
    • [cs.CL]Self-Attention Aligner: A Latency-Control End-to-End Model for ASR Using Self-Attention Network and Chunk-Hopping
    • [cs.CL]Twitch Plays Pokemon, Machine Learns Twitch: Unsupervised Context-Aware Anomaly Detection for Identifying Trolls in Streaming Data
    • [cs.CV]\mathcal{R}^2-CNN: Fast Tiny Object Detection in Large-scale Remote Sensing Images
    • [cs.CV]2017 Robotic Instrument Segmentation Challenge
    • [cs.CV]Accurate Segmentation of Dermoscopic Images based on Local Binary Pattern Clustering
    • [cs.CV]Atlas-based automated detection of swim bladder in Medaka embryo
    • [cs.CV]Automatic Segmentation of Pulmonary Lobes Using a Progressive Dense V-Network
    • [cs.CV]BigEarthNet: A Large-Scale Benchmark Archive For Remote Sensing Image Understanding
    • [cs.CV]Contextual Encoder-Decoder Network for Visual Saliency Prediction
    • [cs.CV]DC-Al GAN: Pseudoprogression and True Tumor Progression of Glioblastoma multiform Image Classification Based On DCGAN and Alexnet
    • [cs.CV]DIViS: Domain Invariant Visual Servoing for Collision-Free Goal Reaching
    • [cs.CV]Decomposing multispectral face images into diffuse and specular shading and biophysical parameters
    • [cs.CV]Deep Learning for Image Super-resolution: A Survey
    • [cs.CV]Detecting Colorized Images via Convolutional Neural Networks: Toward High Accuracy and Good Generalization
    • [cs.CV]Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank
    • [cs.CV]Exploring Stereovision-Based 3-D Scene Reconstruction for Augmented Reality
    • [cs.CV]Fast Pedestrian Detection based on T-CENTRIST
    • [cs.CV]Fully-Featured Attribute Transfer
    • [cs.CV]GANFIT: Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction
    • [cs.CV]Generative Adversarial Networks Synthesize Realistic OCT Images of the Retina
    • [cs.CV]HybridSN: Exploring 3D-2D CNN Feature Hierarchy for Hyperspectral Image Classification
    • [cs.CV]LapEPI-Net: A Laplacian Pyramid EPI structure for Learning-based Dense Light Field Reconstruction
    • [cs.CV]LocalNorm: Robust Image Classification through Dynamically Regularized Normalization
    • [cs.CV]Min-Entropy Latent Model for Weakly Supervised Object Detection
    • [cs.CV]Multi-layer Depth and Epipolar Feature Transformers for 3D Scene Reconstruction
    • [cs.CV]Object Recognition under Multifarious Conditions: A Reliability Analysis and A Feature Similarity-based Performance Estimation
    • [cs.CV]Online PCB Defect Detector On A New PCB Defect Dataset
    • [cs.CV]PIXOR: Real-time 3D Object Detection from Point Clouds
    • [cs.CV]Periocular Recognition in the Wild with Orthogonal Combination of Local Binary Coded Pattern in Dual-stream Convolutional Neural Network
    • [cs.CV]Persistent entropy: a scale-invariant topological statistic for analyzing cell arrangements
    • [cs.CV]PointIT: A Fast Tracking Framework Based on 3D Instance Segmentation
    • [cs.CV]Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology
    • [cs.CV]SEGAN: Structure-Enhanced Generative Adversarial Network for Compressed Sensing MRI Reconstruction
    • [cs.CV]Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey
    • [cs.CV]Semantically Interpretable and Controllable Filter Sets
    • [cs.CV]Semi-supervised Learning on Graph with an Alternating Diffusion Process
    • [cs.CV]Single-shot Channel Pruning Based on Alternating Direction Method of Multipliers
    • [cs.CV]Skin Lesion Segmentation and Classification with Deep Learning System
    • [cs.CV]Speeding up convolutional networks pruning with coarse ranking
    • [cs.CV]Structured Group Local Sparse Tracker
    • [cs.CV]Study of dynamical system based obstacle avoidance via manipulating orthogonal coordinates
    • [cs.CV]Unsupervised Domain Adaptation using Deep Networks with Cross-Grafted Stacks
    • [cs.CV]Using Persistent Homology to Quantify a Diurnal Cycle in Hurricane Felix
    • [cs.CY]Analysis of the Main Factors Affecting M-Commerce Adoption in Iraq
    • [cs.CY]BYOD, Personal Area Networks (PANs) and IOT: Threats to Patients Privacy
    • [cs.CY]Base Station Allocation of Defibrillator Drones in Mountainous Regions
    • [cs.CY]Digital Humanities Readiness Assessment Framework: DHuRAF
    • [cs.CY]Local Media and Geo-situated Responses to Brexit: A Quantitative Analysis of Twitter, News and Survey Data
    • [cs.CY]Openbots
    • [cs.CY]Quality of Life Assessment of Diabetic patients from health-related blogs
    • [cs.CY]What Makes a Good Team? A Large-scale Study on the Effect of Team Composition in Honor of Kings
    • [cs.DC]A Timer-Augmented Cost Function for Load Balanced DSMC
    • [cs.DC]Beyond the Memory Wall: A Case for Memory-centric HPC System for Deep Learning
    • [cs.DC]Complexity of the quorum intersection property of the Federated Byzantine Agreement System
    • [cs.DC]Reactive Liquid: Optimized Liquid Architecture for Elastic and Resilient Distributed Data Processing
    • [cs.DS]RACE: Sub-Linear Memory Sketches for Approximate Near-Neighbor Search on Streaming Data
    • [cs.GR]Local Fourier Slice Photography
    • [cs.GT]Limited Lookahead in Imperfect-Information Games
    • [cs.HC]An Automated Testing Framework for Conversational Agents
    • [cs.HC]Outlining the Design Space of Explainable Intelligent Systems for Medical Diagnosis
    • [cs.IR]"The Michael Jordan of Greatness": Extracting Vossian Antonomasia from Two Decades of the New York Times, 1987-2007
    • [cs.IR]Collaborative Similarity Embedding for Recommender Systems
    • [cs.IR]Multiple Document Representations from News Alerts for Automated Bio-surveillance Event Detection
    • [cs.IR]Optimizing Stochastic Gradient Descent in Text Classification Based on Fine-Tuning Hyper-Parameters Approach. A Case Study on Automatic Classification of Global Terrorist Attacks
    • [cs.IR]TopicEq: A Joint Topic and Mathematical Equation Model for Scientific Texts
    • [cs.IR]Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences
    • [cs.IT]A Novel Error Performance Analysis Methodology for OFDM-IM
    • [cs.IT]Adapted Decimation on Finite Frames for Arbitrary Orders of Sigma-Delta Quantization
    • [cs.IT]Analysis of Data Harvesting by Unmanned Aerial Vehicles
    • [cs.IT]Asymptotic Limits of Privacy in Bayesian Time Series Matching
    • [cs.IT]DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications
    • [cs.IT]Delay Outage Probability of Multi-relay Selection for Mobile Relay Edge Computing Systems
    • [cs.IT]Distributed Learning for Channel Allocation Over a Shared Spectrum
    • [cs.IT]FDD Massive MIMO Based on Efficient Downlink Channel Reconstruction
    • [cs.IT]Group testing: an information theory perspective
    • [cs.IT]Load Balancing in 5G HetNets with Millimeter Wave Integrated Access and Backhaul
    • [cs.IT]Maximum distance separable codes to order
    • [cs.IT]Metric properties of homogeneous and spatially inhomogeneous F-divergences
    • [cs.IT]Moment-Based Bound on Peak-to-Average Power Ratio and Reduction with Unitary Matrix
    • [cs.IT]Neural Network-Based Dynamic Threshold Detection for Non-Volatile Memories
    • [cs.IT]On the Equivalence of Semidifinite Relaxations for MIMO Detection with General Constellations
    • [cs.IT]Optimal Sequence and SINR for Desired User in Asynchronous CDMA System
    • [cs.IT]Optimized Trajectory Design in UAV Based Cellular Networks for 3D Users: A Double Q-Learning Approach
    • [cs.IT]Private Inner Product Retrieval for Distributed Machine Learning
    • [cs.IT]Simple Approximations of the SIR Meta Distribution in General Cellular Networks
    • [cs.IT]Transportation Proofs of Rényi Entropy Power Inequalities
    • [cs.IT]Zero-Error Capacity of Duplication Channels
    • [cs.LG]A Little Is Enough: Circumventing Defenses For Distributed Learning
    • [cs.LG]A One-Class Support Vector Machine Calibration Method for Time Series Change Point Detection
    • [cs.LG]A parallel Fortran framework for neural networks and deep learning
    • [cs.LG]A semi-supervised deep residual network for mode detection in Wi-Fi signals
    • [cs.LG]Adaptive Sequence Submodularity
    • [cs.LG]Adversarial Examples in RF Deep Learning: Detection of the Attack and its Physical Robustness
    • [cs.LG]Asymptotic Finite Sample Information Losses in Neural Classifiers
    • [cs.LG]Attention-Based Prototypical Learning Towards Interpretable, Confident and Robust Deep Neural Networks
    • [cs.LG]Conformal calibrators
    • [cs.LG]Deep Convolutional Sum-Product Networks for Probabilistic Image Representations
    • [cs.LG]Designing recurrent neural networks by unfolding an l1-l1 minimization algorithm
    • [cs.LG]Detecting and Diagnosing Incipient Building Faults Using Uncertainty Information from Deep Neural Networks
    • [cs.LG]Fast Efficient Hyperparameter Tuning for Policy Gradients
    • [cs.LG]Grids versus Graphs: Partitioning Space for Improved Taxi Demand-Supply Forecasts
    • [cs.LG]Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study
    • [cs.LG]Intra- and Inter-epoch Temporal Context Network (IITNet) for Automatic Sleep Stage Scoring
    • [cs.LG]Learning Linear-Quadratic Regulators Efficiently with only \sqrt{T} Regret
    • [cs.LG]Making Convex Loss Functions Robust to Outliers using e-Exponentiated Transformation
    • [cs.LG]Message-Dropout: An Efficient Training Method for Multi-Agent Deep Reinforcement Learning
    • [cs.LG]ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems
    • [cs.LG]On Evaluating Adversarial Robustness
    • [cs.LG]On resampling vs. adjusting probabilistic graphical models in estimation of distribution algorithms
    • [cs.LG]Parameter Efficient Training of Deep Convolutional Neural Networks by Dynamic Sparse Reparameterization
    • [cs.LG]Prediction of Porosity and Permeability Alteration based on Machine Learning Algorithms
    • [cs.LG]ProLoNets: Neural-encoding Human Experts' Domain Knowledge to Warm Start Reinforcement Learning
    • [cs.LG]Quantized Frank-Wolfe: Communication-Efficient Distributed Optimization
    • [cs.LG]RES-SE-NET: Boosting Performance of Resnets by Enhancing Bridge-connections
    • [cs.LG]Robustness of Neural Networks: A Probabilistic and Practical Approach
    • [cs.LG]STCN: Stochastic Temporal Convolutional Networks
    • [cs.LG]Screening Rules for Lasso with Non-Convex Sparse Regularizers
    • [cs.LG]Structural Recurrent Neural Network for Traffic Speed Prediction
    • [cs.LG]WiSE-VAE: Wide Sample Estimator VAE
    • [cs.LO]Appendix for: Cut-free Calculi and Relational Semantics for Temporal STIT logics
    • [cs.LO]Iterated Belief Base Revision: A Dynamic Epistemic Logic Approach
    • [cs.NE]Differentiable reservoir computing
    • [cs.NE]Reactive, Proactive, and Inductive Agents: An evolutionary path for biological and artificial spiking networks
    • [cs.RO]"Touching to See" and "Seeing to Feel": Robotic Cross-modal SensoryData Generation for Visual-Tactile Perception
    • [cs.RO]A Fleet of Miniature Cars for Experiments in Cooperative Driving
    • [cs.RO]MetaGrasp: Data Efficient Grasping by Affordance Interpreter Network
    • [cs.RO]Real-Time Trajectory Planning for AGV in the Presence of Moving Obstacles: A First-Search-Then-Optimization Approach
    • [cs.SE]DeepFault: Fault Localization for Deep Neural Networks
    • [cs.SI]A Broad Evaluation of the Tor English Content Ecosystem
    • [cs.SI]Can We Achieve Fresh Information with Selfish Users in Mobile Crowd-Learning?
    • [cs.SI]Learning Topological Representation for Networks via Hierarchical Sampling
    • [cs.SI]Replications in quantitative and qualitative methods: a new era for commensurable digital social sciences
    • [cs.SI]The Ambivalence of Cultural Homophily: Field Positions, Semantic Similarities, and Social Network Ties in Creative Collectives
    • [eess.IV]Automated Detection of Regions of Interest for Brain Perfusion MR Images
    • [eess.SP]Spatial Channel Covariance Estimation for Hybrid Architectures Based on Tensor Decompositions
    • [math.CO]Jacobi Sums and Correlations of Sidelnikov Sequences
    • [math.DG]On the geometric structure ofsome statistical manifolds
    • [math.OC]Faster Gradient-Free Proximal Stochastic Methods for Nonconvex Nonsmooth Optimization
    • [math.OC]The Kalai-Smorodinski solution for many-objective Bayesian optimization
    • [math.PR]Optimal Scaling and Shaping of Random Walk Metropolis via Diffusion Limits of Block-I.I.D. Targets
    • [math.ST]Aggregated test of independence based on HSIC measures
    • [math.ST]Intermediate efficiency of tests under heavy-tailed alternatives
    • [math.ST]Towards Explainable AI: Significance Tests for Neural Networks
    • [physics.soc-ph]Fundamental Diagram of Traffic Flow from Prigogine-Herman-Enskog Equation
    • [physics.soc-ph]Statistical properties of user activity fluctuations in virtual worlds
    • [q-bio.NC]A computational model for grid maps in neural populations
    • [q-bio.NC]Power contours: optimising sample size and precision in experimental psychology and human neuroscience
    • [stat.AP]A Bayesian binary algorithm for RMS-based acoustic signal segmentation
    • [stat.AP]A Statistical Analysis of Noisy Crowdsourced Weather Data
    • [stat.AP]A feature-based framework for detecting technical outliers in water-quality data from in situ sensors
    • [stat.AP]Detected changes in precipitation extremes at their native scales derived from in situ measurements
    • [stat.AP]Model fitting in Multiple Systems Analysis for the quantification of Modern Slavery: Classical and Bayesian approaches
    • [stat.AP]Monte Carlo Sampling Bias in the Microwave Uncertainty Framework
    • [stat.AP]Optimized data exploration applied to the simulation of a chemical process
    • [stat.CO]Is a single unique Bayesian network enough to accurately represent your data?
    • [stat.CO]LISA: a MATLAB package for Longitudinal Image Sequence Analysis
    • [stat.ME]Approximate Bayesian Model Inversion for PDEs with Heterogeneous and State-Dependent Coefficients
    • [stat.ME]Approximate leave-future-out cross-validation for time series models
    • [stat.ME]Assessing Biosimilarity using FunctionalMetrics
    • [stat.ME]Bayesian Methods for Multiple Mediators: Relating Principal Stratification and Causal Mediation in the Analysis of Power Plant Emission Controls
    • [stat.ME]Bayesian Regularization: From Tikhonov to Horseshoe
    • [stat.ME]Generalizing trial findings in nested trial designs with sub-sampling of non-randomized individuals
    • [stat.ME]Privacy Preserving Integrative Regression Analysis of High-dimensional Heterogeneous Data
    • [stat.ME]Projected Pólya Tree
    • [stat.ME]Separating common (global and local) and distinct variation in multiple mixed types data sets
    • [stat.ME]Sequentially additive nonignorable missing data modeling using auxiliary marginal information
    • [stat.ME]Sparse Regression: Scalable algorithms and empirical performance
    • [stat.ME]What is an Ordinal Latent Trait Model?
    • [stat.ML]A Unifying Bayesian View of Continual Learning
    • [stat.ML]Context-Based Dynamic Pricing with Online Clustering
    • [stat.ML]Differentially Private Continual Learning
    • [stat.ML]Going deep in clustering high-dimensional data: deep mixtures of unigrams for uncovering topics in textual data
    • [stat.ML]Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
    • [stat.ML]Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent

    ·····································

    • [cs.AI]A new Potential-Based Reward Shaping for Reinforcement Learning Agent
    Babak Badnava, Nasser Mozayani
    http://arxiv.org/abs/1902.06239v1

    • [cs.AI]Evolutionary Multitasking for Semantic Web Service Composition
    Chen Wang, Hui Ma, Gang Chen, Sven Hartmann
    http://arxiv.org/abs/1902.06370v1

    • [cs.AI]Learning to Infer Program Sketches
    Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, Armando Solar-Lezama
    http://arxiv.org/abs/1902.06349v1

    • [cs.AI]Re-determinizing Information Set Monte Carlo Tree Search in Hanabi
    James Goodman
    http://arxiv.org/abs/1902.06075v1

    • [cs.AI]SCEF: A Support-Confidence-aware Embedding Framework for Knowledge Graph Refinement
    Yu Zhao, Ji Liu
    http://arxiv.org/abs/1902.06377v1

    • [cs.AI]Timeline-based planning: Expressiveness and Complexity
    Nicola Gigante
    http://arxiv.org/abs/1902.06123v1

    • [cs.CL]A Comparative Study of Feature Selection Methods for Dialectal Arabic Sentiment Classification Using Support Vector Machine
    Omar Al-Harbi
    http://arxiv.org/abs/1902.06242v1

    • [cs.CL]A Fully Differentiable Beam Search Decoder
    Ronan Collobert, Awni Hannun, Gabriel Synnaeve
    http://arxiv.org/abs/1902.06022v1

    • [cs.CL]CBOW Is Not All You Need: Combining CBOW with the Compositional Matrix Space Model
    Florian Mai, Lukas Galke, Ansgar Scherp
    http://arxiv.org/abs/1902.06423v1

    • [cs.CL]Combination of Domain Knowledge and Deep Learning for Sentiment Analysis of Short and Informal Messages on Social Media
    Khuong Vo, Tri Nguyen, Dang Pham, Mao Nguyen, Minh Truong, Trung Mai, Tho Quan
    http://arxiv.org/abs/1902.06050v1

    • [cs.CL]Contextual Word Representations: A Contextual Introduction
    Noah A. Smith
    http://arxiv.org/abs/1902.06006v1

    • [cs.CL]CruzAffect at AffCon 2019 Shared Task: A feature-rich approach to characterize happiness
    Jiaqi Wu, Ryan Compton, Geetanjali Rakshit, Marilyn Walker, Pranav Anand, Steve Whittaker
    http://arxiv.org/abs/1902.06024v1

    • [cs.CL]Exploring Language Similarities with Dimensionality Reduction Technique
    Sangarshanan Veeraraghavan
    http://arxiv.org/abs/1902.06092v1

    • [cs.CL]Improving Semantic Parsing for Task Oriented Dialog
    Arash Einolghozati, Panupong Pasupat, Sonal Gupta, Rushin Shah, Mrinal Mohit, Mike Lewis, Luke Zettlemoyer
    http://arxiv.org/abs/1902.06000v1

    • [cs.CL]Investigating the Effect of Segmentation Methods on Neural Model based Sentiment Analysis on Informal Short Texts in Turkish
    Fatih Kurt, Dilek Kisa, Pinar Karagoz
    http://arxiv.org/abs/1902.06635v1

    • [cs.CL]Self-Attention Aligner: A Latency-Control End-to-End Model for ASR Using Self-Attention Network and Chunk-Hopping
    Linhao Dong, Feng Wang, Bo Xu
    http://arxiv.org/abs/1902.06450v1

    • [cs.CL]Twitch Plays Pokemon, Machine Learns Twitch: Unsupervised Context-Aware Anomaly Detection for Identifying Trolls in Streaming Data
    Albert Haque
    http://arxiv.org/abs/1902.06208v1

    • [cs.CV]\mathcal{R}^2-CNN: Fast Tiny Object Detection in Large-scale Remote Sensing Images
    Jiangmiao Pang, Cong Li, Jianping Shi, Zhihai Xu, Huajun Feng
    http://arxiv.org/abs/1902.06042v1

    • [cs.CV]2017 Robotic Instrument Segmentation Challenge
    Max Allan, Alex Shvets, Thomas Kurmann, Zichen Zhang, Rahul Duggal, Yun-Hsuan Su, Nicola Rieke, Iro Laina, Niveditha Kalavakonda, Sebastian Bodenstedt, Luis Herrera, Wenqi Li, Vladimir Iglovikov, Huoling Luo, Jian Yang, Danail Stoyanov, Lena Maier-Hein, Stefanie Speidel, Mahdi Azizian
    http://arxiv.org/abs/1902.06426v1

    • [cs.CV]Accurate Segmentation of Dermoscopic Images based on Local Binary Pattern Clustering
    Pedro M. M. Pereira, Rui Fonseca-Pinto, Rui Pedro Paiva, Luis M. N. Tavora, Pedro A. A. Assuncao, Sergio M. M. de Faria1
    http://arxiv.org/abs/1902.06347v1

    • [cs.CV]Atlas-based automated detection of swim bladder in Medaka embryo
    Diane Genest, Marc Léonard, Jean Cousty, Noémie De Crozé, Hugues Talbot
    http://arxiv.org/abs/1902.06130v1

    • [cs.CV]Automatic Segmentation of Pulmonary Lobes Using a Progressive Dense V-Network
    Abdullah-Al-Zubaer Imran, Ali Hatamizadeh, Shilpa P. Ananth, Xiaowei Ding, Demetri Terzopoulos, Nima Tajbakhsh
    http://arxiv.org/abs/1902.06362v1

    • [cs.CV]BigEarthNet: A Large-Scale Benchmark Archive For Remote Sensing Image Understanding
    Gencer Sumbul, Marcela Charfuelan, Begüm Demir, Volker Markl
    http://arxiv.org/abs/1902.06148v1

    • [cs.CV]Contextual Encoder-Decoder Network for Visual Saliency Prediction
    Alexander Kroner, Mario Senden, Kurt Driessens, Rainer Goebel
    http://arxiv.org/abs/1902.06634v1

    • [cs.CV]DC-Al GAN: Pseudoprogression and True Tumor Progression of Glioblastoma multiform Image Classification Based On DCGAN and Alexnet
    Meiyu Li
    http://arxiv.org/abs/1902.06085v1

    • [cs.CV]DIViS: Domain Invariant Visual Servoing for Collision-Free Goal Reaching
    Fereshteh Sadeghi
    http://arxiv.org/abs/1902.05947v1

    • [cs.CV]Decomposing multispectral face images into diffuse and specular shading and biophysical parameters
    Sarah Alotaibi, William A. P. Smith
    http://arxiv.org/abs/1902.06557v1

    • [cs.CV]Deep Learning for Image Super-resolution: A Survey
    Zhihao Wang, Jian Chen, Steven C. H. Hoi
    http://arxiv.org/abs/1902.06068v1

    • [cs.CV]Detecting Colorized Images via Convolutional Neural Networks: Toward High Accuracy and Good Generalization
    Weize Quan, Dong-Ming Yan, Kai Wang, Xiaopeng Zhang, Denis Pellerin
    http://arxiv.org/abs/1902.06222v1

    • [cs.CV]Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank
    Xialei Liu, Joost van de Weijer, Andrew D. Bagdanov
    http://arxiv.org/abs/1902.06285v1

    • [cs.CV]Exploring Stereovision-Based 3-D Scene Reconstruction for Augmented Reality
    Guang-Yu Nie, Yun Liu, Cong Wang, Yue Liu, Yongtian Wang
    http://arxiv.org/abs/1902.06255v1

    • [cs.CV]Fast Pedestrian Detection based on T-CENTRIST
    Hongyin Ni, Bin Lia
    http://arxiv.org/abs/1902.06218v1

    • [cs.CV]Fully-Featured Attribute Transfer
    De Xie, Muli Yang, Cheng Deng, Wei Liu, Dacheng Tao
    http://arxiv.org/abs/1902.06258v1

    • [cs.CV]GANFIT: Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction
    Baris Gecer, Stylianos Ploumpis, Irene Kotsia, Stefanos Zafeiriou
    http://arxiv.org/abs/1902.05978v1

    • [cs.CV]Generative Adversarial Networks Synthesize Realistic OCT Images of the Retina
    Stephen G. Odaibo, M. D., M. S., M. S.
    http://arxiv.org/abs/1902.06676v1

    • [cs.CV]HybridSN: Exploring 3D-2D CNN Feature Hierarchy for Hyperspectral Image Classification
    Swalpa Kumar Roy, Gopal Krishna, Shiv Ram Dubey, Bidyut B. Chaudhuri
    http://arxiv.org/abs/1902.06701v1

    • [cs.CV]LapEPI-Net: A Laplacian Pyramid EPI structure for Learning-based Dense Light Field Reconstruction
    Gaochang Wu, Yebin Liu, Lu Fang, Tianyou Chai
    http://arxiv.org/abs/1902.06221v1

    • [cs.CV]LocalNorm: Robust Image Classification through Dynamically Regularized Normalization
    Bojian Yin, Siebren Schaafsma, Henk Corporaal, H. Steven Scholte, Sander M. Bohte
    http://arxiv.org/abs/1902.06550v1

    • [cs.CV]Min-Entropy Latent Model for Weakly Supervised Object Detection
    Fang Wan, Pengxu Wei, Zhenjun Han, Jianbin Jiao, Qixiang Ye
    http://arxiv.org/abs/1902.06057v1

    • [cs.CV]Multi-layer Depth and Epipolar Feature Transformers for 3D Scene Reconstruction
    Daeyun Shin, Zhile Ren, Erik B. Sudderth, Charless C. Fowlkes
    http://arxiv.org/abs/1902.06729v1

    • [cs.CV]Object Recognition under Multifarious Conditions: A Reliability Analysis and A Feature Similarity-based Performance Estimation
    Dogancan Temel, Jinsol Lee, Ghassan AlRegib
    http://arxiv.org/abs/1902.06585v1

    • [cs.CV]Online PCB Defect Detector On A New PCB Defect Dataset
    Sanli Tang, Fan He, Xiaolin Huang, Jie Yang
    http://arxiv.org/abs/1902.06197v1

    • [cs.CV]PIXOR: Real-time 3D Object Detection from Point Clouds
    Bin Yang, Wenjie Luo, Raquel Urtasun
    http://arxiv.org/abs/1902.06326v1

    • [cs.CV]Periocular Recognition in the Wild with Orthogonal Combination of Local Binary Coded Pattern in Dual-stream Convolutional Neural Network
    Leslie Ching Ow Tiong, Andrew Beng Jin Teoh, Yunli Lee
    http://arxiv.org/abs/1902.06383v1

    • [cs.CV]Persistent entropy: a scale-invariant topological statistic for analyzing cell arrangements
    N. Atienza, L. M. Escudero, M. J. Jimenez, M. Soriano-Trigueros
    http://arxiv.org/abs/1902.06467v1

    • [cs.CV]PointIT: A Fast Tracking Framework Based on 3D Instance Segmentation
    Yuan Wang, Yang Yu, Ming Liu
    http://arxiv.org/abs/1902.06379v1

    • [cs.CV]Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology
    David Tellez, Geert Litjens, Peter Bandi, Wouter Bulten, John-Melle Bokhorst, Francesco Ciompi, Jeroen van der Laak
    http://arxiv.org/abs/1902.06543v1

    • [cs.CV]SEGAN: Structure-Enhanced Generative Adversarial Network for Compressed Sensing MRI Reconstruction
    Zhongnian Li, Tao Zhang, Daoqiang Zhang
    http://arxiv.org/abs/1902.06455v1

    • [cs.CV]Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey
    Longlong Jing, Yingli Tian
    http://arxiv.org/abs/1902.06162v1

    • [cs.CV]Semantically Interpretable and Controllable Filter Sets
    Mohit Prabhushankar, Gukyeong Kwon, Dogancan Temel, Ghassan AlRegib
    http://arxiv.org/abs/1902.06334v1

    • [cs.CV]Semi-supervised Learning on Graph with an Alternating Diffusion Process
    Qilin Li, Senjian An, Ling Li, Wanquan Liu
    http://arxiv.org/abs/1902.06105v1

    • [cs.CV]Single-shot Channel Pruning Based on Alternating Direction Method of Multipliers
    Chengcheng Li, Zi Wang, Xiangyang Wang, Hairong Qi
    http://arxiv.org/abs/1902.06382v1

    • [cs.CV]Skin Lesion Segmentation and Classification with Deep Learning System
    Devansh Bisla, Anna Choromanska, Jennifer A. Stein, David Polsky, Russell Berman
    http://arxiv.org/abs/1902.06061v1

    • [cs.CV]Speeding up convolutional networks pruning with coarse ranking
    Zi Wang, Chengcheng Li, Dali Wang, Xiangyang Wang, Hairong Qi
    http://arxiv.org/abs/1902.06385v1

    • [cs.CV]Structured Group Local Sparse Tracker
    Mohammadreza Javanmardi, Xiaojun Qi
    http://arxiv.org/abs/1902.06182v1

    • [cs.CV]Study of dynamical system based obstacle avoidance via manipulating orthogonal coordinates
    Weiya Ren
    http://arxiv.org/abs/1902.05343v2

    • [cs.CV]Unsupervised Domain Adaptation using Deep Networks with Cross-Grafted Stacks
    Jinyong Hou, Xuejie Ding, Jeremiah D. Deng
    http://arxiv.org/abs/1902.06328v1

    • [cs.CV]Using Persistent Homology to Quantify a Diurnal Cycle in Hurricane Felix
    Sarah Tymochko, Elizabeth Munch, Jason Dunion, Kristen Corbosiero, Ryan Torn
    http://arxiv.org/abs/1902.06202v1

    • [cs.CY]Analysis of the Main Factors Affecting M-Commerce Adoption in Iraq
    Alaa Mahdi Sahi
    http://arxiv.org/abs/1902.06682v1

    • [cs.CY]BYOD, Personal Area Networks (PANs) and IOT: Threats to Patients Privacy
    Samara Ahmed
    http://arxiv.org/abs/1902.06462v1

    • [cs.CY]Base Station Allocation of Defibrillator Drones in Mountainous Regions
    Christian Wankmüller, Christian Truden, Christopher Korzen, Philipp Hungerländer, Gerald Reiner, Ewald Kolesnik
    http://arxiv.org/abs/1902.06685v1

    • [cs.CY]Digital Humanities Readiness Assessment Framework: DHuRAF
    Hossein Hassani, Emir Turajlić, Kemal Taljanović
    http://arxiv.org/abs/1902.06532v1

    • [cs.CY]Local Media and Geo-situated Responses to Brexit: A Quantitative Analysis of Twitter, News and Survey Data
    Genevieve Gorrell, Mehmet E. Bakir, Luke Temple, Diana Maynard, Paolo Cifariello, Jackie Harrison, J. Miguel Kanai, Kalina Bontcheva
    http://arxiv.org/abs/1902.06521v1

    • [cs.CY]Openbots
    Dennis Assenmacher, Lena Adam, Lena Frischlich, Heike Trautmann, Christian Grimme
    http://arxiv.org/abs/1902.06691v1

    • [cs.CY]Quality of Life Assessment of Diabetic patients from health-related blogs
    Andrea Lenzi, Marianna Maranghi, Giovanni Stilo, Paola Velardi
    http://arxiv.org/abs/1902.06548v1

    • [cs.CY]What Makes a Good Team? A Large-scale Study on the Effect of Team Composition in Honor of Kings
    Ziqiang Cheng, Yang Yang, Chenhao Tan, Denny Cheng, Yueting Zhuang, Alex Cheng
    http://arxiv.org/abs/1902.06432v1

    • [cs.DC]A Timer-Augmented Cost Function for Load Balanced DSMC
    William McDoniel, Paolo Bientinesi
    http://arxiv.org/abs/1902.06040v1

    • [cs.DC]Beyond the Memory Wall: A Case for Memory-centric HPC System for Deep Learning
    Youngeun Kwon, Minsoo Rhu
    http://arxiv.org/abs/1902.06468v1

    • [cs.DC]Complexity of the quorum intersection property of the Federated Byzantine Agreement System
    Łukasz Lachowski
    http://arxiv.org/abs/1902.06493v1

    • [cs.DC]Reactive Liquid: Optimized Liquid Architecture for Elastic and Resilient Distributed Data Processing
    Seyed Esmaeil Mirvakili, MohammadAmin Fazli, Jafar Habibi
    http://arxiv.org/abs/1902.05968v1

    • [cs.DS]RACE: Sub-Linear Memory Sketches for Approximate Near-Neighbor Search on Streaming Data
    Benjamin Coleman, Anshumali Shrivastava, Richard G. Baraniuk
    http://arxiv.org/abs/1902.06687v1

    • [cs.GR]Local Fourier Slice Photography
    Christian Lessig
    http://arxiv.org/abs/1902.06082v1

    • [cs.GT]Limited Lookahead in Imperfect-Information Games
    Christian Kroer, Tuomas Sandholm
    http://arxiv.org/abs/1902.06335v1

    • [cs.HC]An Automated Testing Framework for Conversational Agents
    Soodeh Atefi, Mohammad Amin Alipour
    http://arxiv.org/abs/1902.06193v1

    • [cs.HC]Outlining the Design Space of Explainable Intelligent Systems for Medical Diagnosis
    Yao Xie, Ge Gao, Xiang 'Anthony' Chen
    http://arxiv.org/abs/1902.06019v1

    • [cs.IR]"The Michael Jordan of Greatness": Extracting Vossian Antonomasia from Two Decades of the New York Times, 1987-2007
    Frank Fischer, Robert Jäschke
    http://arxiv.org/abs/1902.06428v1

    • [cs.IR]Collaborative Similarity Embedding for Recommender Systems
    Chih-Ming Chen, Chuan-Ju Wang, Ming-Feng Tsai, Yi-Hsuan Yang
    http://arxiv.org/abs/1902.06188v1

    • [cs.IR]Multiple Document Representations from News Alerts for Automated Bio-surveillance Event Detection
    Aaron Tuor, Fnu Anubhav, Lauren Charles
    http://arxiv.org/abs/1902.06231v1

    • [cs.IR]Optimizing Stochastic Gradient Descent in Text Classification Based on Fine-Tuning Hyper-Parameters Approach. A Case Study on Automatic Classification of Global Terrorist Attacks
    Shadi Diab
    http://arxiv.org/abs/1902.06542v1

    • [cs.IR]TopicEq: A Joint Topic and Mathematical Equation Model for Scientific Texts
    Michihiro Yasunaga, John Lafferty
    http://arxiv.org/abs/1902.06034v1

    • [cs.IR]Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences
    Yixin Cao, Xiang Wang, Xiangnan He, Zikun hu, Tat-Seng Chua
    http://arxiv.org/abs/1902.06236v1

    • [cs.IT]A Novel Error Performance Analysis Methodology for OFDM-IM
    Shuping Dang, Guoqing Ma, Basem Shihada, Mohamed-Slim Alouini
    http://arxiv.org/abs/1902.06213v1

    • [cs.IT]Adapted Decimation on Finite Frames for Arbitrary Orders of Sigma-Delta Quantization
    Kung-Ching Lin
    http://arxiv.org/abs/1902.05976v1

    • [cs.IT]Analysis of Data Harvesting by Unmanned Aerial Vehicles
    Chang-sik Choi, Francois Baccelli, Gustavo de Veciana
    http://arxiv.org/abs/1902.06350v1

    • [cs.IT]Asymptotic Limits of Privacy in Bayesian Time Series Matching
    Nazanin Takbiri, Dennis L. Goeckel, Amir Houmansadr, Hossein Pishro-Nik
    http://arxiv.org/abs/1902.06404v1

    • [cs.IT]DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications
    Ahmed Alkhateeb
    http://arxiv.org/abs/1902.06435v1

    • [cs.IT]Delay Outage Probability of Multi-relay Selection for Mobile Relay Edge Computing Systems
    Jie Liang, Zhiyong Chen, Cheng Li, Bin Xia, Ning Liu
    http://arxiv.org/abs/1902.06012v1

    • [cs.IT]Distributed Learning for Channel Allocation Over a Shared Spectrum
    S. M. Zafaruddin, Ilai Bistritz, Amir Leshem, Dusit, Niyato
    http://arxiv.org/abs/1902.06353v1

    • [cs.IT]FDD Massive MIMO Based on Efficient Downlink Channel Reconstruction
    Yu Han, Qi Liu, Chao-Kai Wen, Shi Jin, Kai-Kit Wong
    http://arxiv.org/abs/1902.06174v1

    • [cs.IT]Group testing: an information theory perspective
    Matthew Aldridge, Oliver Johnson, Jonathan Scarlett
    http://arxiv.org/abs/1902.06002v1

    • [cs.IT]Load Balancing in 5G HetNets with Millimeter Wave Integrated Access and Backhaul
    Chiranjib Saha, Harpreet S. Dhillon
    http://arxiv.org/abs/1902.06300v1

    • [cs.IT]Maximum distance separable codes to order
    Ted Hurley, Donny Hurley, Barry Hurley
    http://arxiv.org/abs/1902.06624v1

    • [cs.IT]Metric properties of homogeneous and spatially inhomogeneous F-divergences
    Nicolò De Ponti
    http://arxiv.org/abs/1902.06305v1

    • [cs.IT]Moment-Based Bound on Peak-to-Average Power Ratio and Reduction with Unitary Matrix
    Hirofumi Tsuda
    http://arxiv.org/abs/1902.06420v1

    • [cs.IT]Neural Network-Based Dynamic Threshold Detection for Non-Volatile Memories
    Zhen Mei, Kui Cai, Xingwei Zhong
    http://arxiv.org/abs/1902.06289v1

    • [cs.IT]On the Equivalence of Semidifinite Relaxations for MIMO Detection with General Constellations
    Ya-Feng Liu, Zi Xu, Cheng Lu
    http://arxiv.org/abs/1902.06381v1

    • [cs.IT]Optimal Sequence and SINR for Desired User in Asynchronous CDMA System
    Hirofumi Tsuda
    http://arxiv.org/abs/1902.06422v1

    • [cs.IT]Optimized Trajectory Design in UAV Based Cellular Networks for 3D Users: A Double Q-Learning Approach
    Xuanlin Liu, Mingzhe Chen, Changchuan Yin
    http://arxiv.org/abs/1902.06610v1

    • [cs.IT]Private Inner Product Retrieval for Distributed Machine Learning
    Mohammad Hossein Mousavi, Mohammad Ali Maddah-Ali, Mahtab Mirmohseni
    http://arxiv.org/abs/1902.06319v1

    • [cs.IT]Simple Approximations of the SIR Meta Distribution in General Cellular Networks
    Sanket S. Kalamkar, Martin Haenggi
    http://arxiv.org/abs/1902.06457v1

    • [cs.IT]Transportation Proofs of Rényi Entropy Power Inequalities
    Olivier Rioul
    http://arxiv.org/abs/1902.06120v1

    • [cs.IT]Zero-Error Capacity of Duplication Channels
    Mladen Kovačević
    http://arxiv.org/abs/1902.06275v1

    • [cs.LG]A Little Is Enough: Circumventing Defenses For Distributed Learning
    Moran Baruch, Gilad Baruch, Yoav Goldberg
    http://arxiv.org/abs/1902.06156v1

    • [cs.LG]A One-Class Support Vector Machine Calibration Method for Time Series Change Point Detection
    Baihong Jin, Yuxin Chen, Dan Li, Kameshwar Poolla, Alberto Sangiovanni-Vincentelli
    http://arxiv.org/abs/1902.06361v1

    • [cs.LG]A parallel Fortran framework for neural networks and deep learning
    Milan Curcic
    http://arxiv.org/abs/1902.06714v1

    • [cs.LG]A semi-supervised deep residual network for mode detection in Wi-Fi signals
    Arash Kalatian, Bilal Farooq
    http://arxiv.org/abs/1902.06284v1

    • [cs.LG]Adaptive Sequence Submodularity
    Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, Amin Karbasi
    http://arxiv.org/abs/1902.05981v1

    • [cs.LG]Adversarial Examples in RF Deep Learning: Detection of the Attack and its Physical Robustness
    Silvija Kokalj-Filipovic, Rob Miller
    http://arxiv.org/abs/1902.06044v1

    • [cs.LG]Asymptotic Finite Sample Information Losses in Neural Classifiers
    Brandon Foggo, Nanpeng Yu, Jie Shi, Yuanqi Gao
    http://arxiv.org/abs/1902.05991v1

    • [cs.LG]Attention-Based Prototypical Learning Towards Interpretable, Confident and Robust Deep Neural Networks
    Sercan O. Arik, Tomas Pfister
    http://arxiv.org/abs/1902.06292v1

    • [cs.LG]Conformal calibrators
    Vladimir Vovk, Ivan Petej, Paolo Toccaceli, Alex Gammerman
    http://arxiv.org/abs/1902.06579v1

    • [cs.LG]Deep Convolutional Sum-Product Networks for Probabilistic Image Representations
    Jos van de Wolfshaar, Andrzej Pronobis
    http://arxiv.org/abs/1902.06155v1

    • [cs.LG]Designing recurrent neural networks by unfolding an l1-l1 minimization algorithm
    Hung Duy Le, Huynh Van Luong, Nikos Deligiannis
    http://arxiv.org/abs/1902.06522v1

    • [cs.LG]Detecting and Diagnosing Incipient Building Faults Using Uncertainty Information from Deep Neural Networks
    Baihong Jin, Dan Li, Seshadhri Srinivasan, See-Kiong Ng, Kameshwar Poolla, Alberto~Sangiovanni-Vincentelli
    http://arxiv.org/abs/1902.06366v1

    • [cs.LG]Fast Efficient Hyperparameter Tuning for Policy Gradients
    Supratik Paul, Vitaly Kurin, Shimon Whiteson
    http://arxiv.org/abs/1902.06583v1

    • [cs.LG]Grids versus Graphs: Partitioning Space for Improved Taxi Demand-Supply Forecasts
    Neema Davis, Gaurav Raina, Krishna Jagannathan
    http://arxiv.org/abs/1902.06515v1

    • [cs.LG]Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study
    Leonardo Enzo Brito da Silva, Niklas M. Melton, Donald C. Wunsch II
    http://arxiv.org/abs/1902.06711v1

    • [cs.LG]Intra- and Inter-epoch Temporal Context Network (IITNet) for Automatic Sleep Stage Scoring
    Seunghyeok Back, Seongju Lee, Hogeon Seo, Deokhwan Park, Tae Kim, Kyoobin Lee
    http://arxiv.org/abs/1902.06562v1

    • [cs.LG]Learning Linear-Quadratic Regulators Efficiently with only \sqrt{T} Regret
    Alon Cohen, Tomer Koren, Yishay Mansour
    http://arxiv.org/abs/1902.06223v1

    • [cs.LG]Making Convex Loss Functions Robust to Outliers using e-Exponentiated Transformation
    Suvadeep Hajra
    http://arxiv.org/abs/1902.06127v1

    • [cs.LG]Message-Dropout: An Efficient Training Method for Multi-Agent Deep Reinforcement Learning
    Woojun Kim, Myungsik Cho, Youngchul Sung
    http://arxiv.org/abs/1902.06527v1

    • [cs.LG]ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems
    Philippe Wenk, Gabriele Abbati, Stefan Bauer, Michael A Osborne, Andreas Krause, Bernhard Schölkopf
    http://arxiv.org/abs/1902.06278v1

    • [cs.LG]On Evaluating Adversarial Robustness
    Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry
    http://arxiv.org/abs/1902.06705v1

    • [cs.LG]On resampling vs. adjusting probabilistic graphical models in estimation of distribution algorithms
    Mohamed El Yafrani, Marcella S. R. Martins, Myriam R. B. S. Delgado, Inkyung Sung, Ricardo Lüders, Markus Wagner
    http://arxiv.org/abs/1902.05946v1

    • [cs.LG]Parameter Efficient Training of Deep Convolutional Neural Networks by Dynamic Sparse Reparameterization
    Hesham Mostafa, Xin Wang
    http://arxiv.org/abs/1902.05967v1

    • [cs.LG]Prediction of Porosity and Permeability Alteration based on Machine Learning Algorithms
    Andrei Erofeev, Denis Orlov, Alexey Ryzhov, Dmitry Koroteev
    http://arxiv.org/abs/1902.06525v1

    • [cs.LG]ProLoNets: Neural-encoding Human Experts' Domain Knowledge to Warm Start Reinforcement Learning
    Andrew Silva, Matthew Gombolay
    http://arxiv.org/abs/1902.06007v1

    • [cs.LG]Quantized Frank-Wolfe: Communication-Efficient Distributed Optimization
    Mingrui Zhang, Lin Chen, Aryan Mokhtari, Hamed Hassani, Amin Karbasi
    http://arxiv.org/abs/1902.06332v1

    • [cs.LG]RES-SE-NET: Boosting Performance of Resnets by Enhancing Bridge-connections
    Varshaneya V, Balasubramanian S, Darshan Gera
    http://arxiv.org/abs/1902.06066v1

    • [cs.LG]Robustness of Neural Networks: A Probabilistic and Practical Approach
    Ravi Mangal, Aditya V. Nori, Alessandro Orso
    http://arxiv.org/abs/1902.05983v1

    • [cs.LG]STCN: Stochastic Temporal Convolutional Networks
    Emre Aksan, Otmar Hilliges
    http://arxiv.org/abs/1902.06568v1

    • [cs.LG]Screening Rules for Lasso with Non-Convex Sparse Regularizers
    Alain Rakotomamonjy, Gilles Gasso, Joseph Salmon
    http://arxiv.org/abs/1902.06125v1

    • [cs.LG]Structural Recurrent Neural Network for Traffic Speed Prediction
    Youngjoo Kim, Peng Wang, Lyudmila Mihaylova
    http://arxiv.org/abs/1902.06506v1

    • [cs.LG]WiSE-VAE: Wide Sample Estimator VAE
    Shuyu Lin, Ronald Clark, Robert Birke, Niki Trigoni, Stephen Roberts
    http://arxiv.org/abs/1902.06160v1

    • [cs.LO]Appendix for: Cut-free Calculi and Relational Semantics for Temporal STIT logics
    Kees van Berkel, Tim Lyon
    http://arxiv.org/abs/1902.06632v1

    • [cs.LO]Iterated Belief Base Revision: A Dynamic Epistemic Logic Approach
    Marlo Souza, Álvaro Moreira, Renata Vieira
    http://arxiv.org/abs/1902.06178v1

    • [cs.NE]Differentiable reservoir computing
    Lyudmila Grigoryeva, Juan-Pablo Ortega
    http://arxiv.org/abs/1902.06094v1

    • [cs.NE]Reactive, Proactive, and Inductive Agents: An evolutionary path for biological and artificial spiking networks
    Lana Sinapayen, Atsushi Masumori, Ikegami Takashi
    http://arxiv.org/abs/1902.06410v1

    • [cs.RO]"Touching to See" and "Seeing to Feel": Robotic Cross-modal SensoryData Generation for Visual-Tactile Perception
    Jet-Tsyn Lee, Danushka Bollegala, Shan Luo
    http://arxiv.org/abs/1902.06273v1

    • [cs.RO]A Fleet of Miniature Cars for Experiments in Cooperative Driving
    Nicholas Hyldmar, Yijun He, Amanda Prorok
    http://arxiv.org/abs/1902.06133v1

    • [cs.RO]MetaGrasp: Data Efficient Grasping by Affordance Interpreter Network
    Junhao Cai, Hui Cheng, Zhanpeng Zhang, Jingcheng Su
    http://arxiv.org/abs/1902.06554v1

    • [cs.RO]Real-Time Trajectory Planning for AGV in the Presence of Moving Obstacles: A First-Search-Then-Optimization Approach
    Bai Li, Youmin Zhang, Fengqian Dou, Yi Liu
    http://arxiv.org/abs/1902.06201v1

    • [cs.SE]DeepFault: Fault Localization for Deep Neural Networks
    Hasan Ferit Eniser, Simos Gerasimou, Alper Sen
    http://arxiv.org/abs/1902.05974v1

    • [cs.SI]A Broad Evaluation of the Tor English Content Ecosystem
    Mahdieh Zabihimayvan, Reza Sadeghi, Derek Doran, Mehdi Allahyari
    http://arxiv.org/abs/1902.06680v1

    • [cs.SI]Can We Achieve Fresh Information with Selfish Users in Mobile Crowd-Learning?
    Bin Li, Jia Liu
    http://arxiv.org/abs/1902.06149v1

    • [cs.SI]Learning Topological Representation for Networks via Hierarchical Sampling
    Guoji Fu, Chengbin Hou, Xin Yao
    http://arxiv.org/abs/1902.06684v1

    • [cs.SI]Replications in quantitative and qualitative methods: a new era for commensurable digital social sciences
    Dominique Boullier
    http://arxiv.org/abs/1902.05984v1

    • [cs.SI]The Ambivalence of Cultural Homophily: Field Positions, Semantic Similarities, and Social Network Ties in Creative Collectives
    Nikita Basov, Centre for German, European Studies, St. Petersburg State University
    http://arxiv.org/abs/1902.06597v1

    • [eess.IV]Automated Detection of Regions of Interest for Brain Perfusion MR Images
    Svitlana M Alkhimova
    http://arxiv.org/abs/1902.06323v1

    • [eess.SP]Spatial Channel Covariance Estimation for Hybrid Architectures Based on Tensor Decompositions
    Sungwoo Park, Anum Ali, Nuria González-Prelcic, Robert W. Heath Jr
    http://arxiv.org/abs/1902.06297v1

    • [math.CO]Jacobi Sums and Correlations of Sidelnikov Sequences
    Ayse Alaca, Goldwyn Millar
    http://arxiv.org/abs/1902.06728v1

    • [math.DG]On the geometric structure ofsome statistical manifolds
    Mingao Yuan
    http://arxiv.org/abs/1902.06144v1

    • [math.OC]Faster Gradient-Free Proximal Stochastic Methods for Nonconvex Nonsmooth Optimization
    Feihu Huang, Bin Gu, Zhouyuan Huo, Songcan Chen, Heng Huang
    http://arxiv.org/abs/1902.06158v1

    • [math.OC]The Kalai-Smorodinski solution for many-objective Bayesian optimization
    Mickaël Binois, Victor Picheny, Patrick Taillandier, Abderrahmane Habbal
    http://arxiv.org/abs/1902.06565v1

    • [math.PR]Optimal Scaling and Shaping of Random Walk Metropolis via Diffusion Limits of Block-I.I.D. Targets
    Jeffrey Negrea
    http://arxiv.org/abs/1902.06603v1

    • [math.ST]Aggregated test of independence based on HSIC measures
    Anouar Meynaoui, Béatrice Laurent, Mélisande Albert, Amandine Marrel
    http://arxiv.org/abs/1902.06441v1

    • [math.ST]Intermediate efficiency of tests under heavy-tailed alternatives
    Tadeusz Inglot
    http://arxiv.org/abs/1902.06622v1

    • [math.ST]Towards Explainable AI: Significance Tests for Neural Networks
    Enguerrand Horel, Kay Giesecke
    http://arxiv.org/abs/1902.06021v1

    • [physics.soc-ph]Fundamental Diagram of Traffic Flow from Prigogine-Herman-Enskog Equation
    W. Marques Jr., A. R. Mendez, R. M. Velasco
    http://arxiv.org/abs/1902.06688v1

    • [physics.soc-ph]Statistical properties of user activity fluctuations in virtual worlds
    Yan-Hong Yang, Wen-Jie Xie, Ming-Xia Li, Zhi-Qiang Jiang, Wei-Xing Zhou
    http://arxiv.org/abs/1902.06070v1

    • [q-bio.NC]A computational model for grid maps in neural populations
    Fabio Anselmi, Benedetta Franceschiello, Micah M. Murray, Lorenzo Rosasco
    http://arxiv.org/abs/1902.06553v1

    • [q-bio.NC]Power contours: optimising sample size and precision in experimental psychology and human neuroscience
    Daniel H. Baker, Greta Vilidaite, Freya A. Lygo, Anika K. Smith, Tessa R. Flack, Andre D. Gouws, Timothy J. Andrews
    http://arxiv.org/abs/1902.06122v1

    • [stat.AP]A Bayesian binary algorithm for RMS-based acoustic signal segmentation
    Paulo Hubert, Alexandra Chung, Linilson Padovese
    http://arxiv.org/abs/1902.06315v1

    • [stat.AP]A Statistical Analysis of Noisy Crowdsourced Weather Data
    Arnab Chakraborty, Soumendra Nath Lahiri, Alyson Wilson
    http://arxiv.org/abs/1902.06183v1

    • [stat.AP]A feature-based framework for detecting technical outliers in water-quality data from in situ sensors
    Priyanga Dilini Talagala, Rob J. Hyndman, Catherine Leigh, Kerrie Mengersen, Kate Smith-Miles
    http://arxiv.org/abs/1902.06351v1

    • [stat.AP]Detected changes in precipitation extremes at their native scales derived from in situ measurements
    Mark D. Risser, Christopher J. Paciorek, Travis A. O'Brien, Michael F. Wehner, William D. Collins
    http://arxiv.org/abs/1902.05977v1

    • [stat.AP]Model fitting in Multiple Systems Analysis for the quantification of Modern Slavery: Classical and Bayesian approaches
    Bernard W. Silverman
    http://arxiv.org/abs/1902.06078v1

    • [stat.AP]Monte Carlo Sampling Bias in the Microwave Uncertainty Framework
    Michael Frey, Benjamin F. Jamroz, Amanda Koepke, Jacob D. Rezac, Dylan Williams
    http://arxiv.org/abs/1902.05979v1

    • [stat.AP]Optimized data exploration applied to the simulation of a chemical process
    Raoul Heese, Michal Walczak, Tobias Seidel, Norbert Asprion, Michael Bortz
    http://arxiv.org/abs/1902.06453v1

    • [stat.CO]Is a single unique Bayesian network enough to accurately represent your data?
    Gilles Kratzer, Reinhard Furrer
    http://arxiv.org/abs/1902.06641v1

    • [stat.CO]LISA: a MATLAB package for Longitudinal Image Sequence Analysis
    Jang Ik Cho, Xiaofeng Wang, Yifan Xu, Jiayang Sun
    http://arxiv.org/abs/1902.06131v1

    • [stat.ME]Approximate Bayesian Model Inversion for PDEs with Heterogeneous and State-Dependent Coefficients
    David A. Barajas-Solano, Alexandre M. Tartakovsky
    http://arxiv.org/abs/1902.06718v1

    • [stat.ME]Approximate leave-future-out cross-validation for time series models
    Paul-Christian Bürkner, Jonah Gabry, Aki Vehtari
    http://arxiv.org/abs/1902.06281v1

    • [stat.ME]Assessing Biosimilarity using FunctionalMetrics
    Lin Dong, Sujit K. Ghosh
    http://arxiv.org/abs/1902.06036v1

    • [stat.ME]Bayesian Methods for Multiple Mediators: Relating Principal Stratification and Causal Mediation in the Analysis of Power Plant Emission Controls
    Chanmin Kim, Michael Daniels, Joseph Hogan, Christine Choirat, Corwin Zigler
    http://arxiv.org/abs/1902.06194v1

    • [stat.ME]Bayesian Regularization: From Tikhonov to Horseshoe
    Nicholas G. Polson, Vadim Sokolov
    http://arxiv.org/abs/1902.06269v1

    • [stat.ME]Generalizing trial findings in nested trial designs with sub-sampling of non-randomized individuals
    Issa J. Dahabreh, Miguel A. Hernan, Sarah E. Robertson, Ashley Buchanan, Jon A. Steingrimsson
    http://arxiv.org/abs/1902.06080v1

    • [stat.ME]Privacy Preserving Integrative Regression Analysis of High-dimensional Heterogeneous Data
    Tianxi Cai, Molei Liu, Yin Xia
    http://arxiv.org/abs/1902.06115v1

    • [stat.ME]Projected Pólya Tree
    Luis Nieto-Barajas, Gabriel Nuñez-Antonio
    http://arxiv.org/abs/1902.06020v1

    • [stat.ME]Separating common (global and local) and distinct variation in multiple mixed types data sets
    Yipeng Song, Johan A. Westerhuis, Age K. Smilde
    http://arxiv.org/abs/1902.06241v1

    • [stat.ME]Sequentially additive nonignorable missing data modeling using auxiliary marginal information
    Mauricio Sadinle, Jerome P. Reiter
    http://arxiv.org/abs/1902.06043v1

    • [stat.ME]Sparse Regression: Scalable algorithms and empirical performance
    Dimitris Bertsimas, Jean Pauphilet, Bart Van Parys
    http://arxiv.org/abs/1902.06547v1

    • [stat.ME]What is an Ordinal Latent Trait Model?
    Gerhard Tutz
    http://arxiv.org/abs/1902.06303v1

    • [stat.ML]A Unifying Bayesian View of Continual Learning
    Sebastian Farquhar, Yarin Gal
    http://arxiv.org/abs/1902.06494v1

    • [stat.ML]Context-Based Dynamic Pricing with Online Clustering
    Sentao Miao, Xi Chen, Xiuli Chao, Jiaxi Liu, Yidong Zhang
    http://arxiv.org/abs/1902.06199v1

    • [stat.ML]Differentially Private Continual Learning
    Sebastian Farquhar, Yarin Gal
    http://arxiv.org/abs/1902.06497v1

    • [stat.ML]Going deep in clustering high-dimensional data: deep mixtures of unigrams for uncovering topics in textual data
    Laura Anderlucci, Cinzia Viroli
    http://arxiv.org/abs/1902.06615v1

    • [stat.ML]Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
    Song Mei, Theodor Misiakiewicz, Andrea Montanari
    http://arxiv.org/abs/1902.06015v1

    • [stat.ML]Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
    Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Jascha Sohl-Dickstein, Jeffrey Pennington
    http://arxiv.org/abs/1902.06720v1

    相关文章

      网友评论

          本文标题:今日学术视野(2019.2.20)

          本文链接:https://www.haomeiwen.com/subject/ypxcyqtx.html