1.pandas结合numpy 处理整列数据方法
![](https://img.haomeiwen.com/i11533877/a53a4c021126d7ee.png)
输入结果
![](https://img.haomeiwen.com/i11533877/60dfa3826fcabe89.png)
2. 根据某一列的数据,进行样本筛选(行,为样本)
![](https://img.haomeiwen.com/i11533877/f0ee861d41be6e89.png)
![](https://img.haomeiwen.com/i11533877/901b8247eab51e0b.png)
3.apply的使用
apply号称是自由度最高的使用函数,其实最关键的还是axis的赋值问题总容易搞混
![](https://img.haomeiwen.com/i11533877/cd9e4f2bc9d124ab.png)
![](https://img.haomeiwen.com/i11533877/3b7f74c8cf502c5d.png)
以下是摘抄pandas官方例程中的例子
a.生成最原始的数据表
![](https://img.haomeiwen.com/i11533877/28fd9e63910a1dca.png)
b.
a.列操作?
![](https://img.haomeiwen.com/i11533877/308fe38e23921f39.png)
b.行操作?
![](https://img.haomeiwen.com/i11533877/df394e0848f33473.png)
4.python中lambda的用法
a=lambda x,y,z:(x+8)*y-z
print(a(5,6,7))<=====>(5+8)*6-7=71
5.pandas中groupby()的使用
![](https://img.haomeiwen.com/i11533877/65faf521f6309f2e.png)
![](https://img.haomeiwen.com/i11533877/0d1e449b79a2b91c.png)
![](https://img.haomeiwen.com/i11533877/e2ca32cf4a6c67b4.png)
![](https://img.haomeiwen.com/i11533877/25e370f331fdb7da.png)
![](https://img.haomeiwen.com/i11533877/b057ca699af20b90.png)
![](https://img.haomeiwen.com/i11533877/bcfef79683cbe943.png)
![](https://img.haomeiwen.com/i11533877/ccc6c2214d133f1d.png)
![](https://img.haomeiwen.com/i11533877/e838acbae2bfd2f3.png)
![](https://img.haomeiwen.com/i11533877/64ad975f5fb08708.png)
6. drop_去重操作
df.drop_duplicates(subset=['A','B'],keep='first',inplace=True)
![](https://img.haomeiwen.com/i11533877/a2b5b2daff7bd251.png)
7. 挑选列操作
![](https://img.haomeiwen.com/i11533877/eb2af0f572fe4ccd.png)
![](https://img.haomeiwen.com/i11533877/8723b13512ba8b83.png)
![](https://img.haomeiwen.com/i11533877/129952cb4de844d4.png)
![](https://img.haomeiwen.com/i11533877/09bce4172d3cabd3.png)
![](https://img.haomeiwen.com/i11533877/88185a6594406143.png)
![](https://img.haomeiwen.com/i11533877/2f0be0e8b48215cf.png)
dataframe删除操作
![](https://img.haomeiwen.com/i11533877/2eb0e102e44958c7.png)
![](https://img.haomeiwen.com/i11533877/e76546f52e228dc0.png)
![](https://img.haomeiwen.com/i11533877/736ff5f6a73e9e45.png)
![](https://img.haomeiwen.com/i11533877/4c7f14a8926c7272.png)
![](https://img.haomeiwen.com/i11533877/d9c9eb81d29314bd.png)
![](https://img.haomeiwen.com/i11533877/e27c4437e8c08978.png)
![](https://img.haomeiwen.com/i11533877/2d285adf754961d4.png)
8.Pandas合并数据集
https://blog.csdn.net/u010414589/article/details/51135840
方式一: 使用merge方式
![](https://img.haomeiwen.com/i11533877/86a42cafb5fe5ebe.png)
![](https://img.haomeiwen.com/i11533877/ec93acfc70b81a72.png)
![](https://img.haomeiwen.com/i11533877/70fdf2521bc5e1b0.png)
![](https://img.haomeiwen.com/i11533877/2a5a0ad95fc7c2aa.png)
![](https://img.haomeiwen.com/i11533877/7f9282250a72c774.png)
方式二:使用concat
9.排序
![](https://img.haomeiwen.com/i11533877/2a5be36bcedb0ad1.png)
![](https://img.haomeiwen.com/i11533877/24759667b6b0628b.png)
![](https://img.haomeiwen.com/i11533877/e773c5dffef87141.png)
![](https://img.haomeiwen.com/i11533877/5ee73faadb608e8b.png)
![](https://img.haomeiwen.com/i11533877/3fc6afaada0a3fde.png)
![](https://img.haomeiwen.com/i11533877/49e5206abef87425.png)
![](https://img.haomeiwen.com/i11533877/a2bb23feefda0d69.png)
![](https://img.haomeiwen.com/i11533877/b2755511ae06b134.png)
![](https://img.haomeiwen.com/i11533877/cef54d7a14b155a3.png)
网友评论