统计于最新kaggle-survey-2021
-
工作内容
1.图片分类、其他网络 VGG, Inception, ResNet, ResNeXt, NASNet, EfficientNet CNN) 2.目标检测(YOLOv3, RetinaNet, etc)
3.常用图片视频工具 (PIL, cv2, skimage, etc)
4.生成对抗网络 (GAN, VAE, etc)
-
学习途径
- Coursera、Kaggle
-
语言
- Python、SQL
-
可视化工具
1.Tableau
-
计算引擎
-
Google Cloud Compute Engine
-
Microsoft Azure Virtual Machines
-
服务器
- AWS、Google Cloud Platform (GCP)
-
框架
- TensorFlow、Keras、PyTorch、Xgboost、LightGBM、CatBoost、PyTorch Lightning
-
文本工具
- Word embeddings/vectors (GLoVe, fastText, word2vec)
-
自动化工具
-
Automation of full ML pipelines (e.g. Google Cloud AutoML, H2O Driverless AI)
-
Automated feature engineering/selection (e.g. tpot, boruta_py)
-
Automated data augmentation (e.g. imgaug, albumentations)
-
Automated hyperparameter tuning (e.g. hyperopt, ray.tune, Vizier)
-
Automated model architecture searches (e.g. darts, enas)
-
开发环境
- Jupyter
-
可视化工具
- Matplotlib、Seaborn、Plotly、Ggplot
-
计算引擎
- NVIDIA GPUs、Google Cloud TPUs
-
代码笔记
- GitHub、Kaggle、Colab
-
存储
- S3、Google Cloud Storage (GCS)
-
可视化框架
- TensorBoard、MLflow、Visdom、Neptune.ai
-
数据库
- MySQL、MongoDB、PostgreSQL、SQLite
-
自动ML框架
-
Google Cloud AutoML
-
Azure Automated Machine Learning
-
Databricks AutoML、DataRobot AutoML
-
算法
-
Linear or Logistic Regression
-
Decision Trees or Random Forests
-
Gradient Boosting Machines (xgboost, lightgbm, etc)
-
Convolutional Neural Networks
-
Dense Neural Networks (MLPs, etc)
-
Bayesian Approaches
-
Recurrent Neural Networks
-
Generative Adversarial Networks
-
Evolutionary Approaches
网友评论