美文网首页
110. Balanced Binary Tree 平衡二叉树

110. Balanced Binary Tree 平衡二叉树

作者: xingzai | 来源:发表于2019-05-08 20:47 被阅读0次

    题目链接
    tag:

    • easy

    question:
      Given a binary tree, determine if it is height-balanced.

    For this problem, a height-balanced binary tree is defined as:

    a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

    Example 1:

    Given the following tree [3,9,20,null,null,15,7]:
    3
    / \
    9 20
    / \
    15 7
    Return true.

    Example 2:

    Given the following tree [1,2,2,3,3,null,null,4,4]:
    1
    / \
    2 2
    / \
    3 3
    / \
    4 4
    Return false.

    思路:
      求二叉树是否平衡,根据题目中的定义,高度平衡二叉树是每一个结点的两个子树的深度差不能超过1,那么我们肯定需要一个求各个点深度的函数,然后对每个节点的两个子树来比较深度差,时间复杂度为O(nlg(n)),代码如下:

    C++ 解法一:

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        bool isBalanced(TreeNode *root) {
            if (!root) 
                return true;
            if (abs(getDepth(root->left) - getDepth(root->right)) > 1) 
                return false;
            return isBalanced(root->left) && isBalanced(root->right);    
        }
        int getDepth(TreeNode *root) {
            if (!root) 
                return 0;
            return 1 + max(getDepth(root->left), getDepth(root->right));
        }
    };
    

      上面那个方法不是很高效,因为每一个点都会被上面的点计算深度时访问一次,我们可以进行优化。方法是如果我们发现子树不平衡,则不计算具体的深度,而是直接返回-1。那么优化后的方法为:对于每一个节点,我们通过checkDepth方法递归获得左右子树的深度,如果子树是平衡的,则返回真实的深度,若不平衡,直接返回-1,此方法时间复杂度O(N),空间复杂度O(H),参见代码如下:

    C++ 解法二:

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:    
        bool isBalanced(TreeNode *root) {
            if (checkDepth(root) == -1) 
                return false;
            else 
                return true;
        }
        int checkDepth(TreeNode *root) {
            if (!root) 
                return 0;
            int left = checkDepth(root->left);
            if (left == -1) 
                return -1;
            int right = checkDepth(root->right);
            if (right == -1) 
                return -1;
            int diff = abs(left - right);
            if (diff > 1) 
                return -1;
            else 
                return 1 + max(left, right);
        }
    };
    

    相关文章

      网友评论

          本文标题:110. Balanced Binary Tree 平衡二叉树

          本文链接:https://www.haomeiwen.com/subject/yrfboqtx.html