根据腾讯互娱发布的《2017 Q3 AI 行业全景热度观察》,2017年第三季度,全球AI公司融资总额高达 77.42 亿美元,仅比前两个季度之和低10亿美元,而与2012年同期相比则增长了70余倍。
虽然第四季度还没结束,但10月底旷视科技4.6亿美元的C轮融资额已经刷新了此前由商汤科技所保持的4.1 亿美元的融资记录,也成为全球人工智能企业迄今为止所获得的最大一笔融资。不难看出,火遍整个2017年的人工智能,到了年末依旧是势头不减,甚至很可能再次打破之前的各项融资记录。

回顾过去,从1956年的达特茅斯会议到今天,人工智能已经走过了60多年的历史。在这60多年中,人工智能经历过高峰,也曾跌落到低谷,但从来没有哪一次像今天这样,成为街头巷尾无人不谈的话题。虽然这一定程度上得益于移动互联网时代信息传播效率的飞速提升使得热点话题的影响力得以成千上万倍的扩大。但另一个更重要的原因是,这一次的人工智能复兴与以往的最大区别在于,它让人们真正看到了 AI 技术改变人类未来生活方式的可能性。
用李开复的话说:“今天的人工智能是‘有用’的人工智能……这一次人工智能复兴的最大特点,就是 AI 在多个相关领域表现出可以被普通人认可的性能或效率,并因此被成熟的商业模式接受,开始在产业界发挥出真正的价值......我们说‘人工智能来了’,其实是说,人工智能或深度学习真的可以解决实际问题了。”
可以和李开复这段话相互映证的是,在上周阿里云主办的2017云栖大会·北京峰会上,阿里巴巴明确表示人工智能不应仅仅是“概念上的 AI”,更是“产业上的 AI”,同时宣布了阿里云人工智能技术在金融、零售、航空、交通等多个行业的实践成果。
越来越多的迹象表明,今天的人工智能,真的和以往大不一样。
在过去这一年中,无论是互联网公司还是传统企业,无论是在公司内部宣讲战略还是在外部会议上发表报告,都是三句话不离 AI,唯恐自己被抛弃于时代潮流之后。但与之前的几次技术浪潮相比,人工智能对人才和资源的要求显然要高出不少,不是谁都能玩得转的。
那么,对于大多数公司来说,进入人工智能领域有哪些难以跨越的门槛?企业如何利用 AI 技术助力现有业务更上一层楼?还有,在未来的几年里,人工智能在哪些产业领域可以最快得到应用和普及?
近日,IBM 全球杰出工程师、IBM 研究院认知系统全球研究负责人林咏华女士接受了“AI时代的移动技术革新”大会主办方的采访(大会将于2018年1月5日在北京国际会议中心举行,林咏华女士是受邀演讲嘉宾之一。),聊了聊她对上述问题的看法。以下内容根据采访记录整理而成。
2018年1月5日北京国际会议中心“AI时代的技术革新”大会倒计时8天。感兴趣者可关注APICloud官V:柚子科技APICloud,索取门票。

IBM 林咏华
如何看待当下的人工智能热潮?有多少是理性驱使,又有多少是人云亦云?
人工智能目前无论在企业还是投资界都是被火爆地追逐着。说实在话,当IBM在 2011年构建出 Watson,并首次在智力竞赛中打败最优秀的人类选手时,能预见人工智能对未来业界发展的重要性,但没有想象到这种人人谈人工智能的火爆局面。
纵观整个信息技术在过去10年的发展,无论是10年前移动通信的发展热潮,还是5年前云计算的风起云涌,都没有今天人工智能被关注的广泛性和火爆性。原因是什么呢?是今天人工智能的可实验性远远高于之前的信息科技。
这个“可实验性”是指一个开发者、一个大学生,甚至会编程的中学生都可以进行人工智能实验性的尝试。它来源于整个开源社区在代码和数据上的整体贡献, 得益于整个信息科技领域对开源文化的推动,也得益于几个大的人工智能会议对被录用文章的数据和代码的公开性要求。
在过去几年,围绕深度学习、神经网络等算法的代码以及公开数据集层出不穷。一个开发者,只需要懂 Python,就可以在一天之内构建起一个开发环境,并把开源的代码跑起来。利用开源的数据集,就可以重现别人的结果。
一个新的人工智能研究方向出现,就伴随着一些优秀的数据集公开。例如,当年李飞飞主导的 ImageNet 为今天的图象识别奠定了最大的数据集基础,今年12月 MIT IBM Watson Lab 为了推动视频中的动作识别,共同推出的百万量级的视频动作数据集。所有的这些贡献,都是为了降低大家实验的难度,推动业界更快速地解决人工智能中的难题。在这种人人都可以尝试的氛围下,既推高了大家对这个领域的关注和兴趣,必然也带来了人云亦云的火爆。
但是,这是否就代表了今天在学术界解决了的问题,相关的技术已经可以大量地使用到工业界呢?我觉得大家需要看到工业界和学术界之间的差距。之前我也看到一些人工智能领域的专家进行了许多分析,我这里就讨论两点:
● 第一是数据的差异。
数据是人工智能必不可少的用于训练机器的输入。而今天能在公开途径获得的数据集绝大多数都是非商业用途数据,大多数都是从互联网上积累的数据。真正用于工业场景的高价值数据是难以放到公开数据集中,也难以让千千万万研究者进行算法研究的。
IBM 研究院在医疗、汽车驾驶、生产制造等重要行业领域与相关企业进行人工智能合作研究。在这些行业和企业中,我们遇到了大量公开数据集所没有的数据分布。在面对行业生产部署的严苛要求时,我们一些已有的研究是不适用的,许多在顶级会议中号称的最佳结果也是不适用的。因此,这里需要我们脚踏实地,深入工业行业进行人工智能的研究和开发。
● 第二是人工智能系统本身的成本。
把人工智能用到工业界,我们需要认真审视它附加到现有产品上的成本开销。以视频监控为例,在视频监控中使用人工智能是一个很热的话题。今天,使用人脸识别、人或车辆的自动捕捉进行初步的视频分析已经开始广泛使用在城市、公共安全等领域。
其实基于计算机视觉的人工智能可以做得更多,它可以检测和识别各种物体(而不仅仅是人或车辆),检测人的各种动作等等。但基于深度学习的目标检测算法往往需要大量的GPU计算资源。基于今年最新的GPU硬件能力,一块高性能的GPU也就只能支持34路视频的复杂目标检测(单个模型)。平摊到每路视频,就要大约10002000美金的硬件成本。相比起目前4K摄像头的成本,将近是10倍的成本差异。
如果我们进一步考虑动作检测,使用光流计算或3D深度学习或者更复杂的算法,这个成本的叠加更加难以接受。所以,在人工智能向前行进时,我们需要更多的研究和创新,去解决全系统的优化问题,而绝对不能只停留在单一的功能或精准度的层面。
今天继续分享“2018,人工智能可以在哪些领域最快得到应用和普及?”(下):对于在 AI 领域技术基础比较薄弱的企业,如何才能享受到 AI 带来的红利?
2018年1月5日“AI时代的移动技术革新”大会将在北京国际会议中心举行,感兴趣的伙伴可以点击链接http://www.huodongxing.com/event/4411209831800?qd=wemedia索取大会门票。
网友评论