美文网首页
pytorch多GPU并行运算

pytorch多GPU并行运算

作者: FelixCoder | 来源:发表于2019-03-31 12:21 被阅读0次

    Pytorch多GPU运行

    1. 设置可用GPU环境变量。例如,使用0号和1号GPU'
      os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'
    2. 设置模型参数放置到多个GPU上。在pytorch1.0之后的版本中,多GPU运行变得十分方便,先将模型的参数设置并行
            if torch.cuda.device_count() > 1:
                print("Let's use", torch.cuda.device_count(), "GPUs!")
                model = nn.DataParallel(model)
    
    1. 将模型参数设置使用GPU运行
            if torch.cuda.is_available():
                model.cuda()
    

    踩坑记录

    1. 在训练中,需要使用验证集/测试集对目前的准确率进行测试,验证集/测试集的加载也会占用部分显存,所以在训练开始时,不要将所有显存都几乎占满,稍微留一些显存给训练过程中的测试环节
    2. pytorch并行后,假设batchsize设置为64,表示每张并行使用的GPU都使用batchsize=64来计算(单张卡使用时,使用batchsize=64比较合适时,多张卡并行时,batchsize仍为64比较合适,而不是64*并行卡数)。

    参考

    1. https://www.zhihu.com/question/67726969

    相关文章

      网友评论

          本文标题:pytorch多GPU并行运算

          本文链接:https://www.haomeiwen.com/subject/ysqtbqtx.html