marijuana与很多心血管疾病的发生相关。其主要成分Δ9-tetrahydrocannabinol (Δ9-THC)的受体是cannabinoid receptor 1 (CB1/CNR1) 和 cannabinoid receptor 2 (CB2/CNR2)(两者都属于GPCR家族)。
1. UK Biobank analysis reveals an association between cannabis use and myocardial infarction
Fig 1a: 作者首先使用UKB的数据探究了cannabis use, MI, 和其他 cardiovascular events的关系。在控制了性别年龄和BMI后,作者使用logistic回归模型发现cannabis use was a statistically significant positive predictor for MI.
Fig 1b: 炎症反应是atherosclerosis的核心pathogenesis。所以接下来作者使用olink蛋白组分析探究了recreational smokers (marijuana cigarette) 血浆中的炎症分子水平。结果显示多种与atherosclerosis相关的炎症因子水平显著上调。
2. Genistein binds to the CB1 receptor and inhibits CB1 activity
Fig 2a: 随后作者使用了ROCS software suite
,在SWEETLEAD chemical database
中对4 selective CB1 antagonists进行了筛选。
Fig 2b: Ligand-based high-throughput virtual screening with a chemical database was used to discover new selective CB1 antagonists. We found 62 chemical compounds that were structurally homologous with the 4 selective CB1 antagonists.
Fig 2c-d: 随后作者通过molecular docking 探究了筛选出的62个化合物和CB1 receptor的结合(selective CB1 antagonist AM6538做为阳性对照)。结果发现genistein, a natural soybean flavonoid, 与CB1受体结合。The Schrödinger (Portland, OR, United States of America) suite with glide protein-ligand docking functionality was used to validate that genistein was a ligand for the CB1 receptor。
Fig 2e: Genistein adopted a similar shape to the selective CB1 antagonist query structures.
Fig 2f: An in vitro GTPase assay found that genistein functions as a neutral antagonist.
作者还使用Radioligand binding assays验证了genistein binds human CB1 with an IC50 of 150 nM.
3. Δ9-THC induces cytotoxicity in human endothelial cells
随后作者在3种细胞中评估了Δ9-THC cytotoxicity:(1) human endothelial cells (human umbilical vein endothelial cells [HUVECs] and human coronary artery endothelial cells [HCAECs]), (2) human embryonic stem cell-derived cardiomyocytes (H7 hESC-CMs), and (3) normal human cardiac fibroblasts-ventricular (NHCF-V) cells.
Fig 3a: 结果显示Δ9-THC引起了人内皮细胞的毒性,而对心肌和成纤维没有显著副作用。
Fig 3b-c: Δ9-THC引起了内皮细胞多种炎症相关基因的表达,而氧化应激保护性基因(antioxidant-related gene)的表达则出现下降。
Fig 3d: 在来自4 healthy individuals 的 hiPSC-EC 中也得到了一致的结果。
4. Δ9-THC induces inflammation and NF-kB activation in hiPSC-ECs
Fig 4a: 此前有文献报道cannabis和Δ9-THC具有抗炎作用,但作者发现Δ9-THC可以引起hi-PSC-ECs的多种炎症相关基因的表达。而 I kappa B (NFKBIA),一个NF-kB转录因子的特异性抑制分子,在Δ9-THC的诱导下出现下调。
Fig 4b: 此前文献报道过TNF-a可以引起血管功能失代偿。作者发现Δ9-THC诱导了hiPSC-ECs的TNF-a表达。
Fig 4c-d: 单核和内皮的粘附与动脉粥样硬化对的发生有关。作者发现Δ9-THC处理后,hiPSC-ECs对单核细胞的粘附增加。
Fig 4e: 随后作者使用wash-out 实验评估了Δ9-THC引起的hiPSC-ECs炎症反应的时长。在使用Δ9-THC处理48h后,对hiPSC-ECs进行换液,随后作者每2天检测一次验证基因的表达,一直到2w。结果显示Δ9-THC引起的hiPSC-ECs炎症基因的表达可以持续8-10天。
Fig 4f-h: 随后作者想要去探究Δ9-THC通过CB1引起的血管氧化应激反应的机制。免疫荧光结果显示Δ9-THC诱导了hiPSC-ECs中NFkB的核转位和NFkB磷酸化。选择性 NF-kB inhibitor BAY11-7082可以抑制Δ9-THC诱导的 hiPSC-ECs细胞NFkB磷酸化。
5. Genistein reverses Δ9-THC-induced oxidative stress and inflammation in hiPSC-ECs by inhibiting CB1
The CB1 receptor is implicated in the pathological effects of Δ9-THC on the vasculature. We next employed pharmacologic and genetic inactivation of the CB1 receptor to determine whether the CB1 receptor plays a role in Δ9-THC-induced effects in hiPSC-ECs.
作者首先使用了selective CB1 antagonists AM6545, AM251 和 NESS-0327,发现它们阻断了Δ9-THC诱导的hiPSC-ECs细胞炎症基因和氧化应激相关基因的表达(附件),使用CB1的siRNA也得到了一致的结果(附件)。
随后作者使用了
Fig 5a-b: CRISPR interference (CRISPRi) of CB1 expression reversed Δ9-THC-induced inflammation and oxidative stress in hiPSC-ECs
随后作者探究了CB1 antagonist genistein对Δ9-THC引起的血管功能失代偿的保护作用。
Fig 5c: 作者筛选了一系列的抗氧化剂,发现genistein阻断Δ9-THC引起的hiPSC-ECs氧化应激效果最好。
Fig 5d: 在hiPSC-ECs中,genistein除了上调了Δ9-THC引起的hiPSC-ECs抗氧化基因的下调,还影响了NOS2和NOX1的表达。
Fig 5e-f: genistein没有阻断Δ9-THC引起的hiPSC-ECs和monocyte的粘附增加,但降低了NFKB的磷酸化。此外,genistein还阻断了Δ9-THC引起的hiPSC-ECs的TLR4的表达。
Fig 5g: Cotreatment with genistein also shortened the recovery time of Δ9-THC- induced inflammation from 8–10 days to 4–6 days.
These experimental results indicated that genistein attenuated Δ9-THC-induced oxidative stress and inflammation in hiPSC-ECs.
6. Genistein reverses Δ9-THC-induced endothelial dysfunction, oxidative stress, and inflammation in a mouse model
Fig 6a: 为了验证genistein in vivo的效果,作者对雄性C57小鼠给予了vehicle, Δ9-THC, or Δ9-THC+genistein治疗。
Fig 6b: Wire myograph
显示Δ9-THC诱导了小鼠对的内皮损伤,而genistein则减轻了这种效应。
Fig 6c-d: 对胸主动脉的组织检测结果显示Genistein和其他已知的CB1 antagonist降低了Δ9-THC诱导的炎症基因表达。上调了Δ9-THC引起的oxidative stress protective-related gene的下调。
Fig 6e-f: NF-kB磷酸化和小鼠血浆中SOD的表达在治疗后也出现下降。
Fig 6g-j: Δ9-THC administration decreased circulating levels of the antioxidant glutathione, which was ameliorated with genistein cotreatment.
Collectively, these results indicated that genistein could reverse D9-THC-induced effects in vivo.
7. Effect of THC and genistein on atherosclerosis
作者在动脉粥样硬化模型鼠上也进行了治疗,得到了很好的治疗效果。
8. Genistein binds to the CB1 receptor and does not attenuate D9-THC neurobehavioral effects in vivo
Fig 7a-b: After finding that genistein attenuated the vascular dysfunction caused by Δ9-THC in both in vitro and in vivo studies, we found direct evidence of genistein-binding CB1 using fluorescently labeled genistein (BODIPY517/547-genistein)
Fig 7c: In CB1 radioligand binding assays, BODIPY517/547-genistein had an IC50 of 375 nM on human CB1 receptors and labeled nearly all hiPSC-ECs cells after 12 h incubation.
Fig 7d-g: In vivo binding was investigated using intravenously injected BODIPY517/547-genistein in C57BL/6J mice. After 48 h, BODIPY517/547-genistein was detected in the abdominal viscera, thoracic aorta, heart, and lungs but was minimally detected in the brain.
Fig 7h-i: confocal显示Alexa Fluor-488-labeled CB1 receptor与BOD- IPY517/547-genistein在aortic vascular cells中存在共定位。
Fig 7j: The specificity of genistein binding was interrogated by injecting the selective CB1 antagonist rimonabant before BOD- IPY517/547-genistein. Rimonabant has a stronger binding affinity for the CB1 receptor and reduced BODIPY517/547-genistein binding and fluorescence significantly (0.78 ± 0.08 versus 0.13 ± 0.04, p < 0.00001)
Genistein alone did not affect tetrad effects, and genistein could not attenuate the Δ9-THC neurobehavioral effects in cotreatment.
缺陷:iPSC-ECs are immature, having low eNOS expression and are a mixture of arterial, venous, and lymphatic ECs. Therefore, it was imperative to validate the effects observed in the iPSC-ECs with primary endothelial cells and murine models.
网友评论