以下内容来自B站up主:大鹏统计工作室 的系列教学视频《R语言Logistic回归临床预测模型》
第七节 calibration校准曲线(4种款式)
假定已经拟合好了下面的模型:
image.png
dd = datadist(mydata)
options(datadist = “dd”)
Method 1
fit1 <- lrm(formula1, data = mydata, x=TRUE,y=TRUE)
cal1 <- calibrate(fit1, method = "boot", B=1000)
plot(cal1,
xlim = c(0,1),
xlab = "Predicted Probability",
ylab = "Observed Probability",
legend = FALSE,
subtitles = FALSE)
abline(0,1,col = "black",lty = 2,lwd = 2)
lines(cal1[,c("predy","calibrated.orig")], type = "l",lwd = 2,col="red",pch =16)
lines(cal1[,c("predy","calibrated.corrected")], type = "l",lwd = 2,col="green",pch =16)
legend(0.55,0.35,
c("Apparent","Ideal","Bias-corrected"),
lty = c(2,1,1),
lwd = c(2,1,1),
col = c("black","red","green"),
bty = "n") # "o"为加边框
image.png
Method 2
library(riskRegression)
fit2 <- glm(formula2,data = mydata,family = binomial())
xb <- Score(list("fit"=fit2),formula= Group~1,
null.model = FALSE,
conf.int = TRUE,
plots = c("calibration","ROC"),
metrics = c("auc","brier"),
B=1000,M = 50, # bootstrap;每次抽样50
data= mydata)
plotCalibration(xb,col="red")
image.png
Method 3(多个模型结果汇总1)
fit1 = glm(formula1, data=mydata,family = binomial())
fit2 = glm(formula2, data=mydata,family = binomial())
fit3 = glm(formula3, data=mydata,family = binomial())
fit4 = glm(formula4, data=mydata,family = binomial())
xb <- Score(list("fit1"=fit1,
"fit2"=fit2,
"fit3"=fit3,
"fit4"=fit4),
formula=Group~1,
null.model = FALSE,
conf.int =TRUE,
plots =c("calibration","ROC"),
metrics = c("auc","brier"),
B=1000,M=50,
data=mydata)
plotCalibration(xb)
image.png
Method 4(多个模型结果汇总2)
fit1 <- lrm(formula1, data = mydata, x=TRUE,y=TRUE)
cal1 <- calibrate(fit1, method = "boot", B=1000)
fit2 <- lrm(formula2, data = mydata, x=TRUE,y=TRUE)
cal2 <- calibrate(fit2, method = "boot", B=1000)
fit3 <- lrm(formula3, data = mydata, x=TRUE,y=TRUE)
cal3 <- calibrate(fit3, method = "boot", B=1000)
fit4 <- lrm(formula4, data = mydata, x=TRUE,y=TRUE)
cal4 <- calibrate(fit4, method = "boot", B=1000)
plot(1,type ="n",
xlim =c(0,1),
ylim =c(0,1),
xlab = "Predicted Probability",
ylab = "Observed Probability",
legend = FALSE,
subtitles = FALSE)
abline(0,1,col = "black",lty = 2,lwd = 2)
lines(cal1[,c("predy","calibrated.corrected")], type = "l",lwd = 2,col="red",pch =16)
lines(cal2[,c("predy","calibrated.corrected")], type = "l",lwd = 2,col="green",pch =16)
lines(cal3[,c("predy","calibrated.corrected")], type = "l",lwd = 2,col="blue",pch =16)
lines(cal4[,c("predy","calibrated.corrected")], type = "l",lwd = 2,col="yellow",pch =16)
legend(0.55,0.35,
c("fit1","fit2","fit3","fit4"),
lty = c(2,2,2,2),
lwd = c(2,2,2,2),
col = c("red","green","blue","yellow"), #和上面的保持一致
bty = "n") # "o"为加边框
image.png
网友评论