美文网首页
Ignite分布式计算

Ignite分布式计算

作者: goxplanet | 来源:发表于2022-08-11 21:48 被阅读0次

    call

    call和funcation都是发送到分布式节点执行的代码。
    是实现了IgniteCallable接口的算子,被ignite.compute()发送到节点去执行。
    call和funcation可以同步或者异步执行,大多数情况下,我们会使用异步执行。

    this.compute.broadcast(() -> System.out.println("Hello Node: " + ignite.cluster().localNode().id()));
    
    private Collection<IgniteCallable<Integer>> createCalls(){
        Collection<IgniteCallable<Integer>> calls = new ArrayList<>();
        for(String word : "How many characters".split(" ")) {
            calls.add(() -> {
                return word.length();
            });
        }
        return calls;
    }
    
    public boolean call(){
        Collection<Integer> res = this.compute.call(createCalls());
        int total = res.stream().mapToInt(Integer::intValue).sum();
        logger.info("call: the total lengths of all words is = " + total);
        return true;
    }
    
    public boolean asyncCall(){
        IgniteFuture<Collection<Integer>> future = this.compute.callAsync(createCalls());
        future.listen(fut -> {
            int total = fut.get().stream().mapToInt(Integer::intValue).sum();
            logger.info("asyncCall: Total number of characters = " + total);
        });
        return true;
    }
    

    map-reduce

    call和map-reduce的场景比较适合replicated的方式,当所有的节点通过复制模式拿到数据之后,使用call和map-redice可以从local快速获得数据.
    但是“Replicated caches are ideal when data sets are small and updates are infrequent.”,这个就有点搞笑。

    但当由于时钟同步差异,节点的数据不一致时会怎样?

    public boolean mapReduce(){
        String text = "Hello Ignite Enable World!";
        int cnt = ignite.compute().execute(MapExampleCharacterCountTask.class, text);
        logger.info("mapReduce: text length without spaces = " + cnt);
        return true;
    }
    
    private static class MapExampleCharacterCountTask extends ComputeTaskAdapter<String, Integer> {
        @Override
        public Map<? extends ComputeJob, ClusterNode> map(List<ClusterNode> nodes, String arg) throws IgniteException {
            Map<ComputeJob, ClusterNode> map = new HashMap<>();
            Iterator<ClusterNode> it = nodes.iterator();
            for (final String word : arg.split(" ")) {
                if (!it.hasNext()) {
                    it = nodes.iterator();
                }
                ClusterNode node = it.next();
                map.put(new ComputeJobAdapter() {
                    @Override
                    public Object execute() throws IgniteException {
                        System.out.println("** node map reduce call **>" + word);
                        return word.length();
                    }
                }, node);
            }
            return map;
        }
    
        @Override
        public Integer reduce(List<ComputeJobResult> results) throws IgniteException {
            int sum = 0;
            for (ComputeJobResult res : results) {
                sum += res.<Integer>getData();
            }
            return sum;
        }
    }
    

    affinity compute

    当cache使用partition方式部署时,affinity compute使用cache对象相同的算法调度compute到指定的节点,这样算子的执行和cache的位置一致,可以取得本地的查询速度。假设cache中的对象包含一个1000个随机数数组,我们的计算是对这个数据进行sum。

    import org.apache.ignite.*;
    import org.apache.ignite.binary.BinaryObject;
    import org.apache.ignite.lang.IgniteCallable;
    import org.apache.ignite.resources.IgniteInstanceResource;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    import java.util.List;
    
    public class AffinityComputeExample {
        Ignite ignite;
        IgniteCache<Long, Organization> cache;
        final static int COUNT_ORG = 1000;
        Logger logger = LoggerFactory.getLogger(getClass());
        final static String cacheName = "organization";
        final static int QUERY_TIMES = 10;
        Long[] idxes;
    
        public AffinityComputeExample(){
            idxes = new Long[QUERY_TIMES];
            for (int i = 0; i < QUERY_TIMES; i++) {
                idxes[i] = Long.valueOf(i + 1);
            }
        }
    
        public void setUp() {
            String path = AffinityKeyExample.class.getResource("/example-affinitykey.xml").getFile();
            this.ignite = Ignition.start(path);
            this.cache = this.ignite.getOrCreateCache(cacheName);
            this.cache.clear();
            IgniteDataStreamer<Long, Organization> streamerOrg = ignite.dataStreamer(cacheName);
            logger.info("load data ...");
            for (int i = 1; i <= COUNT_ORG; i++) {
                Organization r = new Organization("org_" + i);
                streamerOrg.addData(r.id, r);
            }
            streamerOrg.flush();
            streamerOrg.close();
        }
    
        public void run() {
            setUp();
            IgniteCompute compute = this.ignite.compute();
    
            for (Long k:idxes) {
                Long sum = compute.affinityCall(cacheName, k, new SumTask(k));
                logger.info(k + " sum = " + sum);
            }
        }
        
        private static class SumTask implements IgniteCallable<Long> {
            Long key;
            public SumTask(Long k) {
                this.key = k;
            }
    
            @IgniteInstanceResource
            private Ignite ignite;
    
            @Override
            public Long call() throws Exception {
                IgniteCache<Long, BinaryObject> cache = ignite.cache(cacheName).withKeepBinary();
                System.out.println(this.key);
                BinaryObject obj = cache.get(this.key);
                if (obj != null) {
                    List<Long> data = obj.field("data");
                    Long sum = data.stream().mapToLong(Long::longValue).sum();
                    return sum;
                }
                return null;
            }
        }
    
    }
    
    

    https://ignite.apache.org/docs/latest/data-modeling/affinity-collocation

    service

    相关文章

      网友评论

          本文标题:Ignite分布式计算

          本文链接:https://www.haomeiwen.com/subject/yubtgrtx.html