Scikit-learn Pipeline可以简化机器学习代码,让我们的代码看起来更加条理。
构建pipeline的流程如下例子:
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error
# 找到分类变量
categorical_cols = [cname for cname in X_train_full.columns if
X_train_full[cname].nunique() < 10 and
X_train_full[cname].dtype == "object"]
# 找到数值变量
numerical_cols = [cname for cname in X_train_full.columns if
X_train_full[cname].dtype in ['int64', 'float64']]
# 缺失值填补
numerical_transformer = SimpleImputer(strategy='constant')
# 对分类变量的处理
categorical_transformer = Pipeline(steps = [
('imputer', SimpleImputer(strategy = 'most_frequent')),
('onehot', OneHotEncoder(handle_unknown = 'ignore'))])
# Bundle preprocessing for numerical and categorical data
preprocessor = ColumnTransformer(
transformers=[
('num', numerical_transformer, numerical_cols),
('cat', categorical_transformer, categorical_cols)
])
# Define model
model = RandomForestRegressor()
# Bundle preprocessing and modeling code in a pipeline
clf = Pipeline(steps=[('preprocessor', preprocessor),
('model', model)
])
# Preprocessing of training data, fit model
clf.fit(X_train, y_train)
# Preprocessing of validation data, get predictions
preds = clf.predict(X_valid)
print('MAE:', mean_absolute_error(y_valid, preds))
简单来说主要流程就是:
1). 对分类变量和数值变量分别进行缺失值处理;
2). 对数值变量编码 & 对分类变量标准化(scale);
3). 建立机器学习模型;
4). 将其合到一起组成pipeline;
5). 预测
网友评论