LRU

作者: GOGOYAO | 来源:发表于2019-10-14 15:19 被阅读0次

    [TOC]

    参考

    1. LRU算法四种实现方式介绍
    2. 一个线程安全的 lrucache 实现 --- 读 leveldb 源码
    3. LRU Cache 最近最少使用页面置换缓存器
    4. LRU-K和2Q缓存算法介绍
    5. 你与解决“缓存污染”只差这篇文章的距离

    题目要求

    这个缓存器主要有两个成员函数,get 和 put,其中 get 函数是通过输入 key 来获得 value,如果成功获得后,这对 (key, value) 升至缓存器中最常用的位置(顶部),如果 key 不存在,则返回 -1。而 put 函数是插入一对新的 (key, value),如果原缓存器中有该 key,则需要先删除掉原有的,将新的插入到缓存器的顶部。如果不存在,则直接插入到顶部。若加入新的值后缓存器超过了容量,则需要删掉一个最不常用的值,也就是底部的值。具体实现时我们需要三个私有变量,cap, l和m,其中 cap 是缓存器的容量大小,l是保存缓存器内容的列表,m是 HashMap,保存关键值 key 和缓存器各项的迭代器之间映射,方便我们以 O(1) 的时间内找到目标项。

    然后我们再来看 get 和 put 如何实现,get 相对简单些,我们在 HashMap 中查找给定的 key,若不存在直接返回 -1。如果存在则将此项移到顶部,这里我们使用 C++ STL 中的函数 splice,专门移动链表中的一个或若干个结点到某个特定的位置,这里我们就只移动 key 对应的迭代器到列表的开头,然后返回 value。这里再解释一下为啥 HashMap 不用更新,因为 HashMap 的建立的是关键值 key 和缓存列表中的迭代器之间的映射,get 函数是查询函数,如果关键值 key 不在 HashMap,那么不需要更新。如果在,我们需要更新的是该 key-value 键值对儿对在缓存列表中的位置,而 HashMap 中还是这个 key 跟键值对儿的迭代器之间的映射,并不需要更新什么。

    对于 put,我们也是现在 HashMap 中查找给定的 key,如果存在就删掉原有项,并在顶部插入新来项,然后判断是否溢出,若溢出则删掉底部项(最不常用项)。

    class LRUCache{
    public:
        LRUCache(int capacity) {
            cap = capacity;
        }
        
        int get(int key) {
            auto it = m.find(key);
            if (it == m.end()) return -1;
            l.splice(l.begin(), l, it->second);
            return it->second->second;
        }
        
        void put(int key, int value) {
            auto it = m.find(key);
            if (it != m.end()) l.erase(it->second);
            l.push_front(make_pair(key, value));
            m[key] = l.begin();
            if (m.size() > cap) {
                int k = l.rbegin()->first;
                l.pop_back();
                m.erase(k);
            }
        }
        
    private:
        int cap;
        list<pair<int, int>> l;
        unordered_map<int, list<pair<int, int>>::iterator> m;
    };
    

    常规LRU的问题及解决方案

    当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。

    LRU-K

    LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。
    相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。

    数据第一次被访问时,加入到历史访问列表,如果书籍在访问历史列表中没有达到K次访问,则按照一定的规则(FIFO,LRU)淘汰;当访问历史队列中的数据访问次数达到K次后,将数据索引从历史队列中删除,将数据移到缓存队列中,并缓存数据,缓存队列重新按照时间排序;缓存数据队列中被再次访问后,重新排序,需要淘汰数据时,淘汰缓存队列中排在末尾的数据,即“淘汰倒数K次访问离现在最久的数据”。
    LRU-K具有LRU的优点,同时还能避免LRU的缺点,实际应用中LRU-2是综合最优的选择。由于LRU-K还需要记录那些被访问过、但还没有放入缓存的对象,因此内存消耗会比LRU要多。

    two queue

    Two queues(以下使用2Q代替)算法类似于LRU-2,不同点在于2Q将LRU-2算法中的访问历史队列(注意这不是缓存数据的)改为一个FIFO缓存队列,即:2Q算法有两个缓存队列,一个是FIFO队列,一个是LRU队列。当数据第一次访问时,2Q算法将数据缓存在FIFO队列里面,当数据第二次被访问时,则将数据从FIFO队列移到LRU队列里面,两个队列各自按照自己的方法淘汰数据。

    新访问的数据插入到FIFO队列中,如果数据在FIFO队列中一直没有被再次访问,则最终按照FIFO规则淘汰;如果数据在FIFO队列中再次被访问到,则将数据移到LRU队列头部,如果数据在LRU队列中再次被访问,则将数据移动LRU队列头部,LRU队列淘汰末尾的数据。

    相关文章

      网友评论

          本文标题:LRU

          本文链接:https://www.haomeiwen.com/subject/ywulmctx.html