美文网首页
无标题文章

无标题文章

作者: ClimbYang | 来源:发表于2018-08-15 22:56 被阅读0次

# LevelDB简单介绍

------

LevelDB是Google开源的持久化KV单机数据库,具有很高的随机写,顺序读/写性能,但是随机读的性能很一般,也就是说,LevelDB很适合应用在查询较少,而写很多的场景。LevelDB应用了`LSM (Log Structured Merge)` 策略,`lsm_tree`对索引变更进行延迟及批量处理,并通过一种类似于归并排序的方式高效地将更新迁移到磁盘,降低索引插入开销,关于LSM,本文在后面也会简单提及。

根据Leveldb官方网站的描述,LevelDB的特点和限制如下:

特点:

1、key和value都是任意长度的字节数组;

2、entry(即一条K-V记录)默认是按照key的字典顺序存储的,当然开发者也可以重载这个排序函数;

3、提供的基本操作接口:Put()、Delete()、Get()、Batch();

4、支持批量操作以原子操作进行;

5、可以创建数据全景的snapshot(快照),并允许在快照中查找数据;

6、可以通过前向(或后向)迭代器遍历数据(迭代器会隐含的创建一个snapshot);

7、自动使用Snappy压缩数据;

8、可移植性;

限制:

1、非关系型数据模型(NoSQL),不支持sql语句,也不支持索引;

2、一次只允许一个进程访问一个特定的数据库;

3、没有内置的C/S架构,但开发者可以使用LevelDB库自己封装一个server;

下面展示了一个db文件夹下的文件内容

1. .log

2. CURRENT

3. LOCK

4. LOG

5. MAINFEST

这几个文件是leveldb在磁盘上的最主要的表现形式,还有一些比较重要的文件`.sst文件`没有展示出(这是因为当前db没有数据写入,或是数据量太小还在LOG文件中)

leveldb在内存中还存在两种数据存储形式`MemTable`和`Immutable MemTable`,以上的文件和数据结构组成了leveldb基本存储框架

  下图是LevelDB运行一段时间后的存储模型快照:

下面我将一一讲解这些文件的作用

###**MAINFEST文件**

SSTable中的某个文件属于特定层级,而且其存储的记录是key有序的,那么必然有文件中的最小key和最大key,这是非常重要的信息,Manifest 就记载了SSTable各个文件的管理信息,比如属于哪个Level,文件名称叫啥,最小key和最大key各自是多少。下图是Manifest所存储内容的示意:

###**CURRENT文件**

随之SSTable的不断合并,新文件不断产生,老文件合并后被丢弃Manifest也会跟着反映这种变化,此时往往会新生成Manifest文件来记载这种变化,而Current则用来指出哪个Manifest文件才是我们关心的那个Manifest文件。

.log文件和SSTable文件以及MemTable都是K-V([]byte-[]byte)形式存储的。

###**LOCK文件**

LOCK文件主要是用于获取文件锁,或者给文件上锁用。(在fabric中peer节点就是以互斥锁的形式打开文件,使得外部打开文件只能以read-only+不获取文件锁的形式去做)

###**sst文件**

sst文件并不是分散在leveldb中存储,而是以层级结构存储的,每个level存在许多sst文件,每个sst文件大小上限为2MB,而一个sst文件又是由若干个block组成,每个block的大小为4K,这些block是读写的最小单元。SST文件的最后一个block是一个index,指向每个datablock的起始位置,以及每个block第一个entry的key值(block内的key有序存储)

由log直接读取的entry会写到Level 0的SST中(最多4个文件);

当Level 0的4个文件都存储满了,会选择其中一个文件Compact到Level 1的SST中

注意:

>* Level 0的SSTable文件和其它Level的文件相比有特殊性:这个层级内的.sst文件,两个文件可能存在key重叠,比如有两个level 0的sst文件,文件A和文件B,文件A的key范围是:{bar, car},文件B的Key范围是{blue,samecity},那么很可能两个文件都存在key=”blood”的记录。对于其它Level的SSTable文件来说,则不会出现同一层级内.sst文件的key重叠现象,就是说LevelL中任意两个.sst文件,那么可以保证它们的key值是不会重叠的。

Log:最大4MB (可配置), 会写入Level 0;

Level 0:最多4个SST文件,;

Level 1:总大小不超过10MB;

Level 2:总大小不超过100MB;

Level 3+:总大小不超过上一个Level ×10的大小。

比如:0 ↠ 4 SST, 1 ↠ 10M, 2 ↠ 100M, 3 ↠ 1G, 4 ↠ 10G, 5 ↠ 100G, 6 ↠ 1T, 7 ↠ 10T

在读操作中,要查找一条entry,先查找log,如果没有找到,然后在Level 0中查找,如果还是没有找到,再依次往更底层的Level顺序查找;如果查找了一条不存在的entry,则要遍历一遍所有的Level才能返回"Not Found"的结果。

在写操作中,新数据总是先插入开头的几个Level中,开头的这几个Level存储量也比较小,因此,对某条entry的修改或删除操作带来的性能影响就比较可控。

可见,SST采取分层结构是为了最大限度减小插入新entry时的开销

##**写操作**

1、顺序写入磁盘log文件;

2、由log文件写入内存memtable(采用skiplist结构实现);

3、写入磁盘SST文件(sorted string table files),这步是数据归档的过程(永久化存储);

注意:

>* log文件的作用是是用于系统崩溃恢复而不丢失数据,假如没有Log文件,因为写入的记录刚开始是保存在内存中的,此时如果系统崩溃,内存中的数据还没有来得及Dump到磁盘,所以会丢失数据;

>* 在写memtable时,如果其达到checkpoint(满员)的话,会将其改成immutable memtable(只读),然后等待dump到磁盘SST文件中,此时也会生成新的memtable供写入新数据;

>* memtable和sst文件中的key都是有序的,log文件的key是无序的;

>* LevelDB删除操作也是插入,只是标记Key为删除状态,真正的删除要到Compaction的时候才去做真正的操作;

>* LevelDB没有更新接口,如果需要更新某个Key的值,只需要插入一条新纪录即可;或者先删除旧记录,再插入也可以;

##**读操作**

1、在内存中依次查找memtable、immutable memtable;

2、如果配置了cache,查找cache;

3、根据mainfest索引文件,在磁盘中查找SST文件;

举个例子:我们先往levelDb里面插入一条数据 {key="www.samecity.com"  value="我们"},过了几天,samecity网站改名为:69同城,此时我们插入数据{key="www.samecity.com"value="69同城"},同样的key,不同的value;逻辑上理解好像levelDb中只有一个存储记录,即第二个记录,但是在levelDb中很可能存在两条记录,即上面的两个记录都在levelDb中存储了,此时如果用户查询 key="www.samecity.com",我们当然希望找到最新的更新记录,也就是第二个记录返回,因此,查找的顺序应该依照数据更新的新鲜度来,对于SSTable文件来说,如果同时在level L和Level L+1找到同一个key,level L的信息一定比level L+1的要新。

##**Compaction操作**

对于LevelDb来说,写入记录操作很简单,删除记录仅仅写入一个删除标记就算完事,但是读取记录比较复杂,需要在内存以及各个层级文件中依照新鲜程度依次查找,代价很高。为了加快读取速度,levelDb采取了compaction的方式来对已有的记录进行整理压缩,通过这种方式,来删除掉一些不再有效的KV数据,减小数据规模,减少文件数量等。

LevelDb的compaction机制和过程与Bigtable所讲述的是基本一致的,Bigtable(Google设计的分布式数据存储系统)中讲到三种类型的compaction: minor ,major和full():

>* minor Compaction,就是把memtable中的数据导出到SSTable文件中;

>* major compaction就是合并不同层级的SSTable文件;

>* full compaction就是将所有SSTable进行合并;

LevelDb包含其中两种,minor和major。

Minor compaction 的目的是当内存中的memtable大小到了一定值时,将内容保存到磁盘文件中,如下图:

immutable memtable其实是一个SkipList,其中的记录是根据key有序排列的,遍历key并依次写入一个level 0 的新建SSTable文件中,写完后建立文件的index数据,这样就完成了一次minor compaction。从图中也可以看出,对于被删除的记录,在minor  compaction 过程中并不真正删除这个记录,原因也很简单,这里只知道要删掉key记录,但是这个KV数据在哪里?那需要复杂的查找,所以在minor compaction的时候并不做删除,只是将这个key作为一个记录写入文件中,至于真正的删除操作,在以后更高层级的compaction中会去做。

当某个level下的SSTable文件数目超过一定设置值后,levelDb会从这个level的SSTable中选择一个文件(level>0),将其和高一层级的level+1的SSTable文件合并,这就是major compaction。

### LSM Tree(Log-Structured Merge Tree)

存储引擎和B树存储引擎一样,同样支持增、删、读、改、顺序扫描操作。而且通过批量存储技术规避磁盘随机写入问题。当然凡事有利有弊,LSM树和B+树相比,LSM树牺牲了部分读性能,用来大幅提高写性能。

LSM树的设计思想非常朴素:将对数据的修改增量保持在内存中,达到指定的大小限制后将这些修改操作批量写入磁盘,不过读取的时候稍微麻烦,需要合并磁盘中历史数据和内存中最近修改操作,所以写入性能大大提升,读取时可能需要先看是否命中内存,否则需要访问较多的磁盘文件。

LSM树原理把一棵大树拆分成N棵小树,它首先写入内存中,随着小树越来越大,内存中的小树会flush到磁盘中,磁盘中的树定期可以做merge操作,合并成一棵大树,以优化读性能。

LSM Tree,对于最简单的二层LSMTree而言,内存中的数据和磁盘中的数据merge操作如下:

LSM-Tree

相关文章

  • 无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标

    无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章 无标题文章无标题文章无标题文章无...

  • 无标题文章

    无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章

  • 无标题文章

    无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标...

  • 无标题文章

    无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标...

  • fasfsdfdf

    无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标...

  • 无标题文章

    无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标...

  • 无标题文章

    无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标...

  • 无标题文章

    无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标...

  • 无标题文章

    无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章无标题文章

  • 无标题文章

    无标题文章 无标题文章 无标题文章无标题文章 无标题文章 无标题文章

网友评论

      本文标题:无标题文章

      本文链接:https://www.haomeiwen.com/subject/yxgwbftx.html