美文网首页Flink
Flink SQL-Client 的使用

Flink SQL-Client 的使用

作者: hongyuzhou | 来源:发表于2019-05-08 14:54 被阅读0次

flink sql client 介绍

The SQL Client aims to provide an easy way of writing, debugging, and submitting table programs to a Flink cluster without a single line of Java or Scala code. The SQL Client CLI allows for retrieving and visualizing real-time results from the running distributed application on the command line.

flink sql-client 是一种实用的工具,方便 flink 开发人员编写,调试,提交实时table代码, 不用编写 JavaScala代码。同时在 sql-client 上能够可视化的看到实时统计的 retractappend 结果。

部署环境 (单机)

  • java 1.8
  • zookeeper 3.4.13
  • kafka 0.11
  • flink 1.6

  1. 启动 zookeeper
yizhou@pro:~$ zkServer start
ZooKeeper JMX enabled by default
Using config: /usr/local/etc/zookeeper/zoo.cfg
Starting zookeeper ... STARTED

yizhou@pro:~$ zkServer status
ZooKeeper JMX enabled by default
Using config: /usr/local/etc/zookeeper/zoo.cfg
Mode: standalone
  1. 启动 kafka
yizhou@pro:${KAFKA_HOME}$ nohup bin/kafka-server-start.sh config/server.properties &
[1] 70358

# 查看 topic
yizhou@pro:${KAFKA_HOME}$ bin/kafka-topics.sh --list --zookeeper localhost:2181
__consumer_offsets
idea
order_sql

# 往 order_sql 这个 topic发送 json 消息
yizhou@pro:${KAFKA_HOME}$ bin/kafka-console-producer.sh --broker-list localhost:9092 --topic order_sql
>{"order_id": "1","shop_id": "AF18","member_id": "3410211","trade_amt": "100.00","pay_time": "1556420980000"}
>{"order_id": "2","shop_id": "AF20","member_id": "3410213","trade_amt": "130.00","pay_time": "1556421040000"}
>{"order_id": "3","shop_id": "AF18","member_id": "3410212","trade_amt": "120.00","pay_time": "1556421100000"}
>{"order_id": "4","shop_id": "AF19","member_id": "3410212","trade_amt": "100.00","pay_time": "1556421120000"}
>{"order_id": "5","shop_id": "AF18","member_id": "3410211","trade_amt": "150.00","pay_time": "1556421480000"}
>{"order_id": "6","shop_id": "AF18","member_id": "3410211","trade_amt": "110.00","pay_time": "1556421510000"}
>{"order_id": "7","shop_id": "AF19","member_id": "3410213","trade_amt": "110.00","pay_time": "1556421570000"}
>{"order_id": "8","shop_id": "AF20","member_id": "3410211","trade_amt": "100.00","pay_time": "1556421630000"}
>{"order_id": "9","shop_id": "AF17","member_id": "3410212","trade_amt": "110.00","pay_time": "1556421655000"}
>
  1. 启动 flink
yizhou@pro:${FLINK_HOME}/bin$ ./start-cluster.sh
Starting cluster.
Starting standalonesession daemon on host pro.local.
Starting taskexecutor daemon on host pro.local.

注册 kafka 消息为 flink sql 的动态表

kafka消息映射为flink sql 的动态表,是非常重要的操作。整个操作通过配置 ${FLINK_HOME}/conf 目录下的 yaml 文件实现。以下例子是将 kafkatopic: order_sql, 映射为 table

#==============================================================================
# Table Sources
#==============================================================================

# Define table sources and sinks here.

tables: # empty list
# A typical table source definition looks like:
 - name: orders
   type: source
   update-mode: append
   connector: 
      property-version: 1
      type: kafka
      version: 0.11
      topic: order_sql
      startup-mode: earliest-offset
      properties:
      - key: zookeeper.connect
        value: localhost:2181
      - key: bootstrap.servers
        value: localhost:9092
      - key: group.id
        value: test-consumer-group
   format: 
      property-version: 1
      type: json
      schema: "ROW(order_id LONG, shop_id VARCHAR, member_id LONG, trade_amt DOUBLE, pay_time TIMESTAMP)"
   schema: 
      - name: order_id
        type: LONG
      - name: shop_id
        type: VARCHAR
      - name: member_id
        type: LONG
      - name: trade_amt
        type: DOUBLE
      - name: payment_time
        type: TIMESTAMP
        rowtime:
          timestamps:
            type: "from-field"
            from: "pay_time"
          watermarks:
            type: "periodic-bounded"
            delay: "60000"

#==============================================================================
# User-defined functions
#==============================================================================

# Define scalar, aggregate, or table functions here.

functions: [] # empty list
# A typical function definition looks like:
# - name: ...
#   from: class
#   class: ...
#   constructor: ...

#==============================================================================
# Execution properties
#==============================================================================

# Execution properties allow for changing the behavior of a table program.

execution:
  # 'batch' or 'streaming' execution
  type: streaming
  # allow 'event-time' or only 'processing-time' in sources
  time-characteristic: event-time
  # interval in ms for emitting periodic watermarks
  periodic-watermarks-interval: 200
  # 'changelog' or 'table' presentation of results
  result-mode: table
  # maximum number of maintained rows in 'table' presentation of results
  max-table-result-rows: 1000000
  # parallelism of the program
  parallelism: 1
  # maximum parallelism
  max-parallelism: 128
  # minimum idle state retention in ms
  min-idle-state-retention: 3600000
  # maximum idle state retention in ms
  max-idle-state-retention: 7200000

#==============================================================================
# Deployment properties
#==============================================================================

# Deployment properties allow for describing the cluster to which table
# programs are submitted to.

deployment:
  # general cluster communication timeout in ms
  response-timeout: 5000
  # (optional) address from cluster to gateway
  gateway-address: ""
  # (optional) port from cluster to gateway
  gateway-port: 0

从配置文件中可以看出,flink 中注册的表名为 orders,作为source的数据源表,append的方式不断添加。以 0.11 版本的 kafka 的作为 connector, topic 信息、消息偏移量、zookeeper 地址、broker 地址、消费组信息都写入配置。同时 kafka 消息的 json 消息如何映射到 flink sql tableshecma,选择pay_time 作为 event-timewatermark 设置为60s。

启动 flink sql client

命令行启动 bin/sql-client.sh embedded -d conf/sql.my.yaml -l sql-libs/。 其中 sql.my.yaml 是上述的 yaml 配置文件名称。${FLINK_HOME}/sql-libs 目录下需要提前下载 flink-connector-kafka-0.11flink-json-1.6.1-sql-jar.jar 两个jar包

yizhou@pro:${FLINK_HOME}$ bin/sql-client.sh embedded -d conf/sql.my.yaml -l sql-libs/
Reading default environment from: file:/usr/local/Cellar/apache-flink/1.6.2/libexec/conf/sql.my.yaml
No session environment specified.

                                   ▒▓██▓██▒
                               ▓████▒▒█▓▒▓███▓▒
                            ▓███▓░░        ▒▒▒▓██▒  ▒
                          ░██▒   ▒▒▓▓█▓▓▒░      ▒████
                          ██▒         ░▒▓███▒    ▒█▒█▒
                            ░▓█            ███   ▓░▒██
                              ▓█       ▒▒▒▒▒▓██▓░▒░▓▓█
                            █░ █   ▒▒░       ███▓▓█ ▒█▒▒▒
                            ████░   ▒▓█▓      ██▒▒▒ ▓███▒
                         ░▒█▓▓██       ▓█▒    ▓█▒▓██▓ ░█░
                   ▓░▒▓████▒ ██         ▒█    █▓░▒█▒░▒█▒
                  ███▓░██▓  ▓█           █   █▓ ▒▓█▓▓█▒
                ░██▓  ░█░            █  █▒ ▒█████▓▒ ██▓░▒
               ███░ ░ █░          ▓ ░█ █████▒░░    ░█░▓  ▓░
              ██▓█ ▒▒▓▒          ▓███████▓░       ▒█▒ ▒▓ ▓██▓
           ▒██▓ ▓█ █▓█       ░▒█████▓▓▒░         ██▒▒  █ ▒  ▓█▒
           ▓█▓  ▓█ ██▓ ░▓▓▓▓▓▓▓▒              ▒██▓           ░█▒
           ▓█    █ ▓███▓▒░              ░▓▓▓███▓          ░▒░ ▓█
           ██▓    ██▒    ░▒▓▓███▓▓▓▓▓██████▓▒            ▓███  █
          ▓███▒ ███   ░▓▓▒░░   ░▓████▓░                  ░▒▓▒  █▓
          █▓▒▒▓▓██  ░▒▒░░░▒▒▒▒▓██▓░                            █▓
          ██ ▓░▒█   ▓▓▓▓▒░░  ▒█▓       ▒▓▓██▓    ▓▒          ▒▒▓
          ▓█▓ ▓▒█  █▓░  ░▒▓▓██▒            ░▓█▒   ▒▒▒░▒▒▓█████▒
           ██░ ▓█▒█▒  ▒▓▓▒  ▓█                █░      ░░░░   ░█▒
           ▓█   ▒█▓   ░     █░                ▒█              █▓
            █▓   ██         █░                 ▓▓        ▒█▓▓▓▒█░
             █▓ ░▓██░       ▓▒                  ▓█▓▒░░░▒▓█░    ▒█
              ██   ▓█▓░      ▒                    ░▒█▒██▒      ▓▓
               ▓█▒   ▒█▓▒░                         ▒▒ █▒█▓▒▒░░▒██
                ░██▒    ▒▓▓▒                     ▓██▓▒█▒ ░▓▓▓▓▒█▓
                  ░▓██▒                          ▓░  ▒█▓█  ░░▒▒▒
                      ▒▓▓▓▓▓▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒░░▓▓  ▓░▒█░

    ______ _ _       _       _____  ____  _         _____ _ _            _  BETA
   |  ____| (_)     | |     / ____|/ __ \| |       / ____| (_)          | |
   | |__  | |_ _ __ | | __ | (___ | |  | | |      | |    | |_  ___ _ __ | |_
   |  __| | | | '_ \| |/ /  \___ \| |  | | |      | |    | | |/ _ \ '_ \| __|
   | |    | | | | | |   <   ____) | |__| | |____  | |____| | |  __/ | | | |_
   |_|    |_|_|_| |_|_|\_\ |_____/ \___\_\______|  \_____|_|_|\___|_| |_|\__|

        Welcome! Enter HELP to list all available commands. QUIT to exit.


Flink SQL> show tables;
orders

Flink SQL> describe orders;
root
 |-- order_id: Long
 |-- shop_id: String
 |-- member_id: Long
 |-- trade_amt: Double
 |-- payment_time: TimeIndicatorTypeInfo(rowtime)


Flink SQL>

运行 sql 语句

  • 首先执行最简单的 select *
Flink SQL> select * from orders;
select * from orders
  • 1分钟固定窗口计算
SELECT
  shop_id
  , TUMBLE_START(payment_time, INTERVAL '1' MINUTE) AS tumble_start
  , TUMBLE_END(payment_time, INTERVAL '1' MINUTE)   AS tumble_end
  , sum(trade_amt)                             AS amt
FROM orders
GROUP BY shop_id, TUMBLE(payment_time, INTERVAL '1' MINUTE);
1分钟固定窗口计算

参考资料

相关文章

网友评论

    本文标题:Flink SQL-Client 的使用

    本文链接:https://www.haomeiwen.com/subject/yxkmoqtx.html