美文网首页
ctr模型 , 计算广告,推荐系统 名词简单理解

ctr模型 , 计算广告,推荐系统 名词简单理解

作者: 轻菊不爱柠檬 | 来源:发表于2019-11-06 17:22 被阅读0次

ctr模型 , 计算广告,推荐系统

1.计算广告和推荐系统是两个完全不同的业务,但是内部用到的推荐技术(大概可以这么说叭)是相似的,但是有一点,推荐系统更关心新用户的冷启动问题。

2.CTR(点击通过率)

CTR=点击次数/曝光次数

主要用来排序,就是对用户进行商品等召回之后,按照点击率进行排序,这个时候会用到。

3.graph embedding 在推荐系统中(graph embedding在淘宝推荐系统上的应用)

https://blog.csdn.net/Zhangbei_/article/details/93353688 ,

上文总结:

    graph embedding目的是生成商品的表示向量,然后对商品两两之间做点积运算,计算商品之间的相似度。对用户有过行为的每个商品,召回一批最相似的商品,这一阶段叫matching,接下来做的就是把这些商品送给第二阶段ranking做排序。

具体的方法:根据用户的行为,构建以商品为node的图,然后通过random walk生成商品的序列,再利用skip-gram方法,生成商品的表示向量,这叫做Base Graph Embedding(BGE)。构建完有向图之后,商品冷启动问题,就加上物品的边信息(品牌,商品类别,商店等)。

一个完整推荐系统的设计:

1.采用 多重算法+交互设计。使用多种算法配合使用,取长补短,配合产品,根据数据提升效果。在完整推荐系统中不仅要有传统的rating,还要辅以非常多的挖掘,Ranking来表达预期的效果。

2.推荐系统3大件:

(1)UserProfile

(2)基础数据挖掘

(3)Rankings

垂直搜索

1,搜索中有一句话:用户无法描述他要找什么除非让他看到想找的东西。(觉得这句话写的有趣)

2,所谓垂直,和百度这类搜索引擎最大的不同就是它不是包罗万象的,它针对特定行业互联网中的信息内容进行搜索,再将这些特定信息进行整合后,再定向的反馈给用户。比如,房产领域的垂直搜索就是专门搜索网页中关于房产的信息进行整合,再反馈给用户。

上下文信息

在做推荐时,除了考虑用户画像还要考虑上下文信息,

上下文信息是指:推荐位置(开屏和章末的转化率是不同的),推荐时间(晚上和白天的转化率是不同的)等。推荐系统实时性和推荐结果的时间多样性。

其中:转化率是指,曝光到点击,曝光到收藏,曝光到阅读字数等

相关文章

网友评论

      本文标题:ctr模型 , 计算广告,推荐系统 名词简单理解

      本文链接:https://www.haomeiwen.com/subject/yxxpbctx.html