一、深度优先遍历
深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点。总结起来可以这样说:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
我们从这里可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
具体算法表述如下:
- 1、访问初始结点v,并标记结点v为已访问。
- 2、查找结点v的第一个邻接结点w。
- 3、若w存在,则继续执行4,否则算法结束。
- 4、若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。
- 5、查找结点v的w邻接结点的下一个邻接结点,转到步骤3。
二、邻接表进行深度优先遍历
2.1 构建数据结构
public class Graph {
//顶点个数
private int V;
//边的条数
private int E;
//领接表的底层存储结构
private TreeSet<Integer>[] adj;
}
2.2 通过该结构定义,我们构造一个图(无向图)
/**
* @Author: huangyibo
* @Date: 2022/3/28 1:02
* @Description: 领接表, 目前只支持无向无权图
*/
public class Graph {
//顶点个数
private int V;
//边的条数
private int E;
//领接表的底层存储结构
private TreeSet<Integer>[] adj;
public Graph(String filename){
File file = new File(filename);
try {
Scanner scanner = new Scanner(file);
V = scanner.nextInt();
if(V < 0){
throw new IllegalArgumentException("V must be non-negative");
}
adj = new TreeSet[V];
//初始化领接表
for (int i = 0; i < V; i++) {
adj[i] = new TreeSet<>();
}
E = scanner.nextInt();
if(E < 0){
throw new IllegalArgumentException("E must be non-negative");
}
for (int i = 0; i < E; i++) {
int a = scanner.nextInt();
//校验顶点a是否合法
validateVertex(a);
int b = scanner.nextInt();
//校验顶点b是否合法
validateVertex(b);
//校验是否是自环边
if(a == b){
throw new IllegalArgumentException("Self Loop is Detected!");
}
//校验是否是平行边
if(adj[a].contains(b)){
throw new IllegalArgumentException("Parallel Edges are Detected!");
}
adj[a].add(b);
adj[b].add(a);
}
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
/**
* 校验顶点是否合法
* @param v
*/
private void validateVertex(int v){
if(v < 0 || v >= V){
throw new IllegalArgumentException("vertex " + v + " is invalid");
}
}
/**
* 获取顶点个数
* @return
*/
public int V(){
return V;
}
/**
* 获取边的条数
* @return
*/
public int E(){
return E;
}
/**
* 图中是否存在v到w的边
* @param v
* @param w
* @return
*/
public boolean hasEdge(int v, int w){
//校验顶点v是否合法
validateVertex(v);
//校验顶点w是否合法
validateVertex(w);
return adj[v].contains(w);
}
/**
* 返回和v相邻的顶点
* @param v
* @return
*/
public Iterable<Integer> adj(int v){
//校验顶点v是否合法
validateVertex(v);
return adj[v];
}
/**
* 返回顶点v的度
* 顶点v的度(Degree)是指在图中与v相关联的边的条数
* @param v
* @return
*/
public int degree(int v){
//校验顶点v是否合法
validateVertex(v);
return adj[v].size();
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append(String.format("V = %d, E = %d\n", V, E));
for (int v = 0; v < V; v++) {
sb.append(String.format("%d : ", v));
for (Integer w : adj[v]) {
sb.append(String.format("%d ", w));
}
sb.append("\n");
}
return sb.toString();
}
}
2.3 邻接表的深度优先递归算法
/**
* @Author: huangyibo
* @Date: 2022/3/28 1:02
* @Description: 图的深度优先遍历
*/
public class GraphDFS {
private Graph G;
/**
* 图的顶点是否已经被遍历过
*/
private boolean[] visited;
//图的深度优先遍历前序遍历结果
private List<Integer> pre = new ArrayList<>();
//图的深度优先遍历后序遍历结果
private List<Integer> post = new ArrayList<>();
public GraphDFS(Graph G){
this.G = G;
visited = new boolean[G.V()];
//循环所有顶点, 防止一个图出现多个连通图(连通分量)的情况
for (int v = 0; v < G.V(); v++) {
if(!visited[v]){
dfs(v);
}
}
}
/**
* 图的深度优先遍历
* @param v
*/
private void dfs(int v) {
visited[v] = true;
pre.add(v);
for (Integer w : G.adj(v)) {
if(!visited[w]){
dfs(w);
}
}
post.add(v);
}
public List<Integer> pre(){
return pre;
}
public List<Integer> post(){
return post;
}
public static void main(String[] args) {
Graph graph = new Graph("src/main/resources/g1.txt");
GraphDFS graphDFS = new GraphDFS(graph);
System.out.println(graphDFS.pre());
System.out.println(graphDFS.post());
}
}
g1.txt
7 6
0 1
0 2
1 3
1 4
2 3
2 6
三、基于深度优先遍历的应用
3.1 求解联通分量
- 1、图的联通分量个数
- 2、判断两个顶点是否在同一个联通分量中
- 3、图中不同的联通分量对应的顶点
/**
* @Author: huangyibo
* @Date: 2022/3/28 1:02
* @Description: 基于图的深度优先遍历、求解联通分量
*/
public class ConnectedGraph {
private Graph G;
//图的顶点是否已经被遍历过
private int[] visited;
//图的联通分量个数
private Integer ccCount = 0;
public ConnectedGraph(Graph G){
this.G = G;
visited = new int[G.V()];
for (int i = 0; i < visited.length; i++) {
visited[i] = -1;
}
//循环所有顶点, 防止一个图出现多个连通图(连通分量)的情况
for (int v = 0; v < G.V(); v++) {
if(visited[v] == -1){
dfs(v, ccCount);
ccCount ++;
}
}
}
/**
* 图的深度优先遍历
* @param v
*/
private void dfs(int v, int ccId) {
visited[v] = ccId;
for (Integer w : G.adj(v)) {
if(visited[w] == -1){
dfs(w, ccId);
}
}
}
public Integer count(){
return ccCount;
}
/**
* 判断顶点v和w是否在同一个联通分量中
* @param v
* @param w
* @return
*/
public boolean isConnected(int v, int w){
//校验顶点v是否合法
G.validateVertex(v);
//校验顶点w是否合法
G.validateVertex(w);
return visited[v] == visited[w];
}
/**
* 返回图中不同的联通分量对应的顶点
* @return
*/
public List<Integer>[] components(){
List<Integer>[] lists = new ArrayList[ccCount];
for (int i = 0; i < ccCount; i++) {
lists[i] = new ArrayList<>();
}
for (int v = 0; v < G.V(); v++) {
lists[visited[v]].add(v);
}
return lists;
}
public static void main(String[] args) {
Graph graph = new Graph("src/main/resources/g1.txt");
ConnectedGraph ccGraph = new ConnectedGraph(graph);
System.out.println(ccGraph.count());
System.out.println(ccGraph.isConnected(0, 6));
System.out.println(ccGraph.isConnected(0, 5));
List<Integer>[] components = ccGraph.components();
for (List<Integer> component : components) {
System.out.println(component);
}
}
}
3.2 求解单源路径问题
/**
* @Author: huangyibo
* @Date: 2022/3/28 1:02
* @Description: 基于图的深度优先遍历、求解单源路径问题
*/
public class SingleSourcePath {
private Graph G;
//源
private int source;
/**
* 图的顶点是否已经被遍历过
*/
private boolean[] visited;
/**
* 存储的是当前访问节点的前一个节点的值
*/
private int[] pre;
public SingleSourcePath(Graph G, int source){
G.validateVertex(source);
this.G = G;
this.source = source;
visited = new boolean[G.V()];
pre = new int[G.V()];
//pre数组的所有元素赋值为-1
Arrays.fill(pre, -1);
//单源路径问题,深度遍历从顶点s开始
dfs(source, source);
}
/**
* 图的深度优先遍历
* @param v 当前节点
* @param parent 当前节点的上一个节点
*/
private void dfs(int v, int parent) {
visited[v] = true;
pre[v] = parent;
for (Integer w : G.adj(v)) {
if(!visited[w]){
dfs(w, v);
}
}
}
/**
* 判断源s到顶点target是否可达
* @param target
* @return
*/
public boolean isConnectedTo(int target){
G.validateVertex(target);
return visited[target];
}
/**
* 源s到顶点target的路径
* @param target
* @return
*/
public List<Integer> path(int target){
List<Integer> result = new ArrayList<>();
if(!isConnectedTo(target)){
//源s到顶点target不可达, 直接返回空集合
return result;
}
int cur = target;
while(cur != source){
result.add(cur);
cur = pre[cur];
}
result.add(source);
Collections.reverse(result);
return result;
}
public static void main(String[] args) {
Graph graph = new Graph("src/main/resources/g1.txt");
SingleSourcePath ssPath = new SingleSourcePath(graph, 0);
System.out.println("0 -> 6 : " + ssPath.path(6));
System.out.println("0 -> 5 : " + ssPath.path(5));
}
}
3.3 求解两点之间是否有路径问题
/**
* @Author: huangyibo
* @Date: 2022/3/28 1:02
* @Description: 基于图的深度优先遍历、求解两点之间是否有路径问题
*/
public class Path {
private Graph G;
//源点
private int source;
//终止点
private int target;
/**
* 图的顶点是否已经被遍历过
*/
private boolean[] visited;
/**
* 存储的是当前访问节点的前一个节点的值
*/
private int[] pre;
public Path(Graph G, int source, int target){
G.validateVertex(source);
G.validateVertex(target);
this.G = G;
this.source = source;
this.target = target;
visited = new boolean[G.V()];
pre = new int[G.V()];
//pre数组的所有元素赋值为-1
Arrays.fill(pre, -1);
//单源路径问题,深度遍历从顶点s开始
dfs(source, source);
}
/**
* 图的深度优先遍历
* @param v 当前节点
* @param parent 当前节点的上一个节点
*/
private boolean dfs(int v, int parent) {
visited[v] = true;
pre[v] = parent;
if(v == target){
return true;
}
for (Integer w : G.adj(v)) {
if(!visited[w]){
if(dfs(w, v)){
return true;
}
}
}
return false;
}
/**
* 判断源s到顶点target是否可达
* @return
*/
public boolean isConnected(){
return visited[target];
}
/**
* 源s到顶点target的路径
* @return
*/
public List<Integer> path(){
List<Integer> result = new ArrayList<>();
if(!isConnected()){
//源s到顶点target不可达, 直接返回空集合
return result;
}
int cur = target;
while(cur != source){
result.add(cur);
cur = pre[cur];
}
result.add(source);
Collections.reverse(result);
return result;
}
public static void main(String[] args) {
Graph graph = new Graph("src/main/resources/g1.txt");
Path path = new Path(graph, 0, 6);
System.out.println("0 -> 6 : " + path.path());
Path path2 = new Path(graph, 0, 1);
System.out.println("0 -> 1 : " + path2.path());
Path path3 = new Path(graph, 0, 5);
System.out.println("0 -> 5 : " + path3.path());
}
}
3.4 无向图的环检测
/**
* @Author: huangyibo
* @Date: 2022/4/9 16:16
* @Description: 基于图的深度优先遍历、求解无向图的环检测问题
*/
public class CycleDetection {
private Graph G;
/**
* 图的顶点是否已经被遍历过
*/
private boolean[] visited;
private boolean hasCycle = false;
public CycleDetection(Graph G){
this.G = G;
visited = new boolean[G.V()];
//循环所有顶点, 防止一个图出现多个连通图(连通分量)的情况
for (int v = 0; v < G.V(); v++) {
if(!visited[v]){
if(dfs(v, v)){
hasCycle = true;
break;
}
}
}
}
/**
* 图的深度优先遍历
* 从顶点V开始,判断图是否有环
* @param v
*/
private boolean dfs(int v, int parent) {
visited[v] = true;
for (Integer w : G.adj(v)) {
if(!visited[w]){
if(dfs(w, v)){
return true;
}
}else if(w != parent){
//表示图有环
return true;
}
}
return false;
}
/**
* 图是否有环
* @return
*/
public boolean hasCycle(){
return hasCycle;
}
public static void main(String[] args) {
Graph graph1 = new Graph("src/main/resources/g1.txt");
CycleDetection cycleDetection1 = new CycleDetection(graph1);
System.out.println(cycleDetection1.hasCycle);
Graph graph2 = new Graph("src/main/resources/g2.txt");
CycleDetection cycleDetection2 = new CycleDetection(graph2);
System.out.println(cycleDetection2.hasCycle);
}
}
3.5 二分图的检测
/**
* @Author: huangyibo
* @Date: 2022/3/28 1:02
* @Description: 基于图的深度优先遍历、二分图的检测
*/
public class BipartitionDetection {
private Graph G;
/**
* 图的顶点是否已经被遍历过
*/
private boolean[] visited;
/**
* 顶点的颜色数组
*/
private int[] colors;
//是否是二分图
private boolean isBipartite = true;
public BipartitionDetection(Graph G){
this.G = G;
visited = new boolean[G.V()];
colors = new int[G.V()];
for (int i = 0; i < G.V(); i++) {
colors[i] = -1;
}
//循环所有顶点, 防止一个图出现多个连通图(连通分量)的情况
for (int v = 0; v < G.V(); v++) {
if(!visited[v]){
if(!dfs(v, 0)){
isBipartite = false;
break;
}
}
}
}
/**
* 图的深度优先遍历
* @param v
*/
private boolean dfs(int v, int color) {
visited[v] = true;
colors[v] = color;
for (Integer w : G.adj(v)) {
if(!visited[w]){
if(!dfs(w, 1 - color)){
return false;
}
}else if(colors[w] == colors[v]){
return false;
}
}
return true;
}
/**
* 是否是二分图
* @return
*/
public boolean isBipartite(){
return isBipartite;
}
public static void main(String[] args) {
Graph graph = new Graph("src/main/resources/g1.txt");
BipartitionDetection bd = new BipartitionDetection(graph);
System.out.println(bd.isBipartite());
}
}
网友评论